Skip to main content
Log in

Probabilistic semi-supervised random subspace sparse representation for classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a novel approach for classification named Probabilistic Semi-supervised Random Subspace Sparse Representation (P-RSSR). In many random subspaces based methods, all features have the same probability to be selected to compose the random subspace. However, in the real world, especially in images, some regions or features are important for classification and some are not. In the proposed P-RSSR, firstly, we calculate the distribution probability of the image and determine which feature is selected to compose the random subspace. Then, we use Sparse Representation (SR) to construct graphs to characterize the distribution of samples in random subspaces, and train classifiers under the framework of Manifold Regularization (MR) in these random subspaces. Finally, we fuse the results in all random subspaces and obtain the classified results through majority vote. Experimental results on face image datasets have demonstrated the effectiveness of the proposed P-RSSR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A leksandar D, Qiu D (2010) Automatic hard thresholding for sparse signal reconstruction from NDE measurements. Rev Progress Quant Nondestruct Eval 29(1211):806–813

    Google Scholar 

  2. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  3. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neurocomputing 15(6):1373–1396

    MATH  Google Scholar 

  4. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434

    MathSciNet  MATH  Google Scholar 

  5. Cai D, He XF, Han JW (2007) Semi-supervised discriminant analysis. IEEE international conference on computer vision 1–7

  6. Cevikalp H, Verbeek J, Jurie F, Klaser A (2008) Semi-supervised dimensionality reduction using pairwise equivalence constraints. Conf Comput Vis Imaging Comput Graph Theory Appl 1:489–496

    Google Scholar 

  7. Chen K, Wang SH (2011) Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions. IEEE Trans Pattern Anal Mach Intell 33(1):129–143

    Article  Google Scholar 

  8. Cui JS, Liu Y, Xu YD, Zhao HJ, Zha HB (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Man Cybern: Syst 43(4):996–1002

    Article  Google Scholar 

  9. Ding M, Fan G (2015) Multilayer joint gait-pose manifolds for human gait motion modeling. IEEE Trans Cybern 45(11):2413–2424

    Article  Google Scholar 

  10. Drori I, Donoho DL (2006) Solution of L1 minimization problems by LARS/homotopy methods. IEEE international conference on acoustics, speech and signal processing 636–639

  11. Fan MY, Gu NN, Qiao H, Zhang B (2011) Sparse regularization for semi-supervised classification. Pattern Recogn 44(8):1777–1784

    Article  MATH  Google Scholar 

  12. Fan MY, Zhang XQ, Lin ZC, Zhang ZF, Bao HJ (2014) A regularized approach for geodesic-based semisupervised multimanifold learning. IEEE Trans Image Process 23(5):2133–2147

    Article  MathSciNet  MATH  Google Scholar 

  13. Girosi F (1998) An equivalence between sparse approximation and support vector machines. Neurocomputing 10(6):1455–1480

    Google Scholar 

  14. Han J, Yue J, Zhang Y, Bai LF (2014) Kernel maximum likelihood scaled locally linear embedding for night vision images. Opt Laser Technol 56(1):290–298

    Article  Google Scholar 

  15. He XF, Yan SC, Hu YX, Niuogi P, Zhang HJ (2005) Face recognition using laplacian faces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  16. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  17. Jenatton R, Mairal J, Obozinski G, Bach G (2010) Proximal methods for sparse hierarchical dictionary learning. International conference on machine learning 487–494

  18. Kim KI, Kwon Y (2010) Single-image super-resolution using sparse regression and natural image prior. IEEE Trans Pattern Anal Mach Intell 32:1127–1133

    Article  Google Scholar 

  19. Lai ZH, Wan MH, Jin Z, Yang J (2011) Sparse two dimensional local discriminant projections for feature extraction. Neurocomputing 74(4):629–637

    Article  Google Scholar 

  20. Lai ZH, Wong WK, Jin Z, Yang J, Xu Y (2012) Sparse approximation to the eigensubspace for discrimination. IEEE Trans Neural Netw Learn Syst 23(12):1948–1960

    Article  Google Scholar 

  21. Lawrence ND (2004) Gaussian process latent variable models for visualisation of high dimensional data. Adv Neural Inf Proces Syst:329–336

  22. Lawrence N (2005) Probabilistic non-linear principal component analysis with Gaussian process latent variable models. J Mach Learn Res 6(Nov):1783–1816

    MathSciNet  MATH  Google Scholar 

  23. Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  24. Li B, Huang DS, Wang C, Liu KH (2008) Feature extraction using constrained maximum variance mapping. Pattern Recogn 41(11):3287–3294

    Article  MATH  Google Scholar 

  25. Liu Y, Zhang X, Cui JS, Wu C, Hamid Aghajan, Zha HB (2010) Visual analysis of child-adult interactive behaviors in video sequences. International conference on virtual systems and multimedia. IEEE 26–33

  26. Liu Y, Cui JS, Zhao HJ, Zha HB (2012) Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking. 21st international conference on pattern recognition pattern recognition 898–901

  27. Liu L, Zhang HX, Hu XJ, Sun FF (2014) Semi-supervised image classification learning based on random feature subspace. Chinese conference on pattern recognition 237–242

  28. Liu Y, Nie L, Han L, Zhang LM, DS Rosenblum (2015) Action2Activity: recognizing complex activities from sensor data. Int Conf Artif Intell 1617-1623

  29. Liu Y, Zheng Y, Liang Y, Liu SM, DS Rosenblum (2016) Urban water quality prediction based on multi-task multi-view learning. Proceedings of the twenty-fifth international joint conference on artificial intelligence 2576–2582

  30. Liu L, Cheng L, Liu Y, Jia YP, DS Rosenblum (2016) Recognizing complex activities by a probabilistic interval-based model. Proceedings of the Thirtieth AAAI Conf Artif Intell 30:1266–1272

  31. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  32. Liu Y, Liang Y, Liu S, David SR, Zheng Y (2016) Predicting urban water quality with ubiquitous data. https://arxiv.org/abs/1610.09462v1

  33. Liu Y, Zhang LM, Nie LQ, Yan Y, David SR (2016) Fortune teller: predicting your career path. Proceedings of the thirtieth AAAI Conference on Artificial Intelligence 201–207. AAAI Press, Phoenix

  34. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2008) Supervised dictionary learning. Conf Neural Info Process Systems 21:1–8

    Google Scholar 

  35. Mairal J, Jenatton R, Obozinski G, Bach F (2010) Network flow algorithms for structured sparsity. Conf Neural Info Process Syst 23:1558–1566

    MATH  Google Scholar 

  36. Mallapragada PK, Jin R, Jain AK, Liu Y (2009) Semiboost: boosting for semi-supervised learning. IEEE Trans Pattern Anal Mach Intell 31(11):2000–2014

    Article  Google Scholar 

  37. Martinez AM, Benavente R (1998) The AR face database. CVC Tech Rep 24

  38. Martinez AM, Kak AC (2001) PCA versus LDA. IEEE Trans Pattern Anal Mach Intell 23(2):228–233

    Article  Google Scholar 

  39. Preoţiuc-Pietro D, Liu Y, Hopkins DJ, Ungar Lyle (2017) Beyond binary labels: political ideology prediction of Twitter users. Proceedings of the 55th annual meeting of the association for computational linguistics 1:729–740

  40. Protter M, Elad M (2009) Image sequence denoising via sparse and redundant representations. IEEE Trans Image Process 18(18):27–35

    Article  MathSciNet  MATH  Google Scholar 

  41. Qiao LS, Chen SC, Tan XY (2010) Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recogn Lett 31:422–429

    Article  Google Scholar 

  42. Ramirez I, Sprechmann P, Sapiro G (2010) Classification and clustering via dictionary learning with structured incoherence and shared features. IEEE Conf Comput Vis Pattern Recognit 3501–3508. IEEE, San Francisco

  43. Roweis ST, Saul LK (2000) Nonlinear dimension reduction by locally linear embedding. Science 290(5):2323–2326

    Article  Google Scholar 

  44. Samaria F, Harter A (1994) Parameterisation of a stochastic model for human face identification. Proceedings of the second IEEE workshop on applications of computer vision 138–142. IEEE, Sarasota

  45. Scholkopf B, Herbrich R, Smola AJ (2000) A generalized Representer theorem. Conf Comput Learn Theory 42(3):416–426

    MATH  Google Scholar 

  46. Shiozaki A (1986) Edge extraction using entropy operator. Comput Vis Graph Image Proc 36(4):1–9

    Article  Google Scholar 

  47. Sim T, Baker S, Bsat M (2003) The CMU pose illumination and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618

    Article  Google Scholar 

  48. Tenenbaum JB, Silva VD, Langform JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5000):2319–2323

    Article  Google Scholar 

  49. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J R Stat Soc 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  50. Wang JM, Fleet DJ, Hertzmann A (2008) Gaussian process dynamical models for human motion. IEEE Trans Pattern Anal Mach Intell 30(2):283–298

    Article  Google Scholar 

  51. Wechsler H, Phillips PJ, Bruce V, Fogelman F, Huang TS (1998) Face recognition: from theory to applications. NATO ASI Series F, Comput Syst Sci 163:446–456

    Google Scholar 

  52. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1):37–52

    Article  Google Scholar 

  53. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  54. Wu F, Wang WH, Yang Y, Zhuang YT, Nie FP (2010) Classification by semi-supervised discriminative regularization. Neurocomputing 73(10):1641–1651

    Article  Google Scholar 

  55. Yang JC, Wright J, Huang T, Ma Y (2008) Image super-resolution as sparse representation of raw image patches. IEEE Conf Comput Vis Pattern Recognit: 1–8. IEEE, Anchorage

  56. Yang WK, Sun CY, Zhang L (2011) A multi-manifold discriminant analysis method for image feature extraction. Pattern Recogn 44(8):1649–1657

    Article  MATH  Google Scholar 

  57. Yu GX, Zhang G, Domeniconi C, Yu ZW, You J (2012) Semi-supervised classification based on random subspace dimensionality reduction. Pattern Recogn 45(3):1119–1135

    Article  MATH  Google Scholar 

  58. Yu GX, Zhang G, Yu ZW, Domeniconi C, You J, Han GQ (2012) Semi-supervised ensemble classification in subspaces. Appl Soft Comput 12(5):1511–1522

    Article  Google Scholar 

  59. Yu GX, Zhang GJ, Zhang ZL, Yu ZW, Lin D (2015) Semi-supervised classification based on subspace sparse representation. Knowl Inf Syst 43(1):81–101

    Article  Google Scholar 

  60. Zhao MB, Chow TWS, Zhou W, Zhang Z, Li B (2014) Automatic image annotation via compact graph based semi-supervised learning. Knowl-Based Syst 76:148–165

    Article  Google Scholar 

  61. Zhao MB, Zhan C, Wu Z, Tang P (2015) Semi-supervised image classification based on local and global regression. IEEE Signal Process Lett 22(10):1666–1670

    Article  Google Scholar 

  62. Zhu X (2005) Semi-supervised learning literature survey. Computer Science, University of Wisconsin-Madison 2(3):4–63

  63. Zhu XJ, Ghahramani ZB, Lafferty JD (2003) Semi-supervised learning using Gaussian fields and harmonic functions. Int Conf Mach Learn 3:912–919

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61727802, 61501235), the National Defense Pre-Research Field Foundation of China (6140450010316BQ02001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianfa Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Bai, L., Zhang, Y. et al. Probabilistic semi-supervised random subspace sparse representation for classification. Multimed Tools Appl 77, 23245–23271 (2018). https://doi.org/10.1007/s11042-017-5567-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5567-z

Keywords

Navigation