Skip to main content
Log in

Octagonal prism LBP representation for face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an octagonal prism representation for local binary patterns (LBP). This representation implements a new circular distance measurement for face recognition under various illumination conditions. The LBP method has been widely used in many computer vision applications, particularly for face recognition. Most LBP matching methods use distribution features with a bin-to-bin distance measure. However, using this bin-to-bin distance measure may produce low similarity scores even for similar patterns. To address this problem, we placed the LBPs on an octagonal prism in a three dimensional space and used the Euclidean distance measure. In the proposed octagonal prism representation, the LBPs were represented as three dimensional vectors on the octagonal prism. Since similar patterns under different illumination conditions are located in the vicinity on the octagonal prism, the proposed method proved robust against illumination variations. The proposed method produced noticeably improved performance when using the CMU PIE, Yale B, and Extended Yale B databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adini Y, Moses Y, Ullman S (1997) Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans Pattern Anal Mach Intell 19(7):721–732

    Article  Google Scholar 

  2. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  MATH  Google Scholar 

  3. Ali W, Georgsson F, Hellstrom T (2008) Visual tree detection for autonomous navigation in forest environment. In: Proc. IEEE Intell. Veh. Symp., pp 560–565

  4. Basri R, Jacobs D (2003) Lambertian reflectance and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233

    Article  Google Scholar 

  5. Chen T, Yin W, Zhou XS, Comaniciu D, Huang TS (2006) Total variation models for variable lighting face recognition. IEEE Trans Pattern Anal Mach Intell 28(9):1519–1524

    Article  Google Scholar 

  6. Chen W, Er MJ, Wu S (2006) Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Trans Syst Man Cybern B Cybern 36(2):458–466

    Article  Google Scholar 

  7. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  8. Grangier D, Bengio S (2008) A discriminative kernel-based approach to rank images from text queries. IEEE Trans Pattern Anal Mach Intell 30(8):1371–1384

    Article  Google Scholar 

  9. Han H, Shan S, Chen X, Gao W (2013) A comparative study on illumination preprocessing in face recognition. Pattern Recogn 46(6):1691–1699

    Article  Google Scholar 

  10. Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28(4):657–662

    Article  Google Scholar 

  11. Huijsmans DP, Sebe N (2003) Content-based indexing performance: a class size normalized precision, recall, generality evaluation. In: Proc. Int. Conf. Image Process., pp 733–736

  12. Kellokumpu V, Zhao G, Pietikainen M (2008) Human activity recognition using a dynamic texture based method. presented at the Brit. Mach. Vis. Conf

  13. Kluckner S, Pacher G, Grabner H, Bischof H, Bauer J (2007) A 3D teacher for car detection in aerial images. In: Proc. IEEE Int. Conf. Comput. Vis., pp 1–8

  14. Le KN (2011) A mathematical approach to edge detection in hyperbolic distributed and Gaussian-distributed pixel-intensity images using hyperbolic and Gaussian masks. Digit Signal Process 21(1):162–181

    Article  Google Scholar 

  15. Le KN, Dabke KP, Egan GK (2006) On mathematical derivations of auto-term functions and signal-to-noise ratios of Choi–Williams, first and nth-order hyperbolic kernels. Digit Signal Process 16(1):84–104

    Article  Google Scholar 

  16. Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  17. Lee PH, Wu SW, Hung YP (2012) Illumination compensation using oriented local histogram equalization and its application to face recognition. IEEE Trans Image Process 21(9):4280–4289

    Article  MathSciNet  MATH  Google Scholar 

  18. Li Z, Liu G, Yang Y, You J (2012) Scale- and rotation-invariant local binary pattern using scale-adaptive texton and subuniform-based circular shift. IEEE Trans Image Process 21(4):2130–2140

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu HD, Yang M, Gao Y, Cui C (2014) Local histogram specification for face recognition under varying lighting conditions. Image Vis Comput 32(5):335–347

    Article  Google Scholar 

  20. Liu L, Fieguth P, Zhao G, Pietikäinen M, Hu D (2016) Extended local binary patterns for face recognition. Inf Sci 358:56–72

    Article  Google Scholar 

  21. Lucieer A, Stein A, Fisher P (2005) Multivariate texture-based segmentation of remotely sensed imagery for extraction of objects and their uncertainty. Int J Remote Sens 26(14):2917–2936

    Article  Google Scholar 

  22. Maenpaa T, Viertola J, Pietikainen M (2003) Optimising colour and texture features for real-time visual inspection. Pattern Anal Applic 6(3):169–175

    Article  MathSciNet  Google Scholar 

  23. Nanni L, Lumini A (2008) Ensemble of multiple pedestrian representations. IEEE Trans Intell Transp Syst 9(2):365–369

    Article  Google Scholar 

  24. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distribution. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  25. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  26. Oliver A, Lladó X, Freixenet J, Martí J (2007) False positive reduction in mammographic mass detection using local binary patterns. In: Proc. Med. Image Comput. Comput. Assisted Intervention Conf., pp 286–293

  27. Pang Y, Yuan Y, Li X (2008) Gabor-based region covariance matrices for face recognition. IEEE Trans Circuits Syst Video Technol 18(7):989–993

    Article  Google Scholar 

  28. Parkhi OM, Vedaldi A, Zisserman A (2015) Deep face recognition. BMVC 1(3):1–12

    Google Scholar 

  29. Pizer SM, Amburn EP, Austin JD, Cromartie R, Geselowitz A, Greer T, Romeny BH, Zimmerman JB, Zuiderveld K (1987) Adaptive histogram equalization and its variations. Comput Vis Graph Image Process 39(3):355–368

    Article  Google Scholar 

  30. Shan S, Gao W, Cao B, Zhao D (2003) Illumination normalization for robust face recognition against varying lighting conditions. In: Proceedings of the ICCV Workshop on Analysis and Modeling of Faces and Gestures, pp 157–164

  31. Sim T, Baker S, Bsat M (2001) The CMU pose, illumination, and expression (PIE) database of human faces. Carnegie Mellon Univ., Pittsburgh Tech. Rep. CMU-RI-TR-01-02

    Google Scholar 

  32. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  33. Turtinen M, Pietikainen M, Silven O (2006) Visual characterization of paper using Isomap and local binary patterns. IEICE Trans Inf Syst E89-D(7):2076–2083

    Article  Google Scholar 

  34. Wang H, Li SZ, Wang Y (2004) Face recognition under varying lighting conditions using self quotient image. In: Proceedings of the Automatic Face and Gesture Recognition, pp 819–824

  35. Wang B, Li W, Yang W, Liao Q (2011) Illumination normalization based on Weber’s law with application to face recognition. Signal Process Lett 18(8):462–465

    Article  Google Scholar 

  36. Wiskott L, Fellous J-M, Kruger N, von der Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19(7):775–779

    Article  Google Scholar 

  37. Wu Y, Jiang Y, Zhou Y, Li W, Lu Z, Liao Q (2014) Generalized Weber-face for illumination-robust face recognition. Neurocomputing 136:262–267

    Article  Google Scholar 

  38. Xie X, Zheng W-S, Lai J, Yuen P (2008) Face illumination normalization on large and small scale features. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp 1–8

  39. Zhang L, Samaras D (2006) Face recognition from a single training image under arbitrary unknown lighting using spherical harmonics. IEEE Trans Pattern Anal Mach Intell 28(3):351–363

    Article  Google Scholar 

  40. Zhang B, Shan S, Chen X, Gao W (2007) Histogram of gabor phase patterns (hgpp): a novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68

    Article  MathSciNet  Google Scholar 

  41. Zou X, Kittler J, Messer K (2007) Illumination invariant face recognition: a survey. In: Proc. 1st IEEE Int. Conf. Biometrics: Theory, Appl., Syst., pp 1–8

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1A2A2A01006421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulhee Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Jeong, T., Woo, S. et al. Octagonal prism LBP representation for face recognition. Multimed Tools Appl 77, 21751–21770 (2018). https://doi.org/10.1007/s11042-017-5583-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5583-z

Keywords

Navigation