Skip to main content
Log in

Deep networks with non-static activation function

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Deep neural networks typically with a fixed activation function at each neuron, have shown breakthrough performances. The fixed activation function is not the optimal choice for different data distributions. Toward this end, this work improves the deep neural networks by proposing a novel and efficient activation scheme called “Mutual Activation” (MAC). A non-static activation function is adaptively learned in the training phase of deep network. Furthermore, the proposed activation neuron cooperating with maxout is a potent higher-order function approximator, which can break through the convex curve limitation. Experimental results on object recognition benchmarks demonstrate the effectiveness of the proposed activation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agostinelli F, Hoffman MD, Sadowski PJ, Baldi P (2015) Learning activation functions to improve deep neural networks. In: ICLR

  2. Chang JR, Chen YS (2015) Batch-normalized maxout network in network. arXiv:1511.02583 1511.02583

  3. Clevert DA, Unterthiner T, Hochreiter S (2016) Fast and accurate deep network learning by exponential linear units. In: ICLR

  4. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: AISTATS

  5. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: AISTATS

  6. Goodfellow IJ, Warde-Farley D, Mirza M, Courville AC, Bengio Y (2013) Maxout networks. In: ICML

  7. Gulcehre C, Cho K, Pascanu R, Bengio Y (2014) Learned-norm pooling for deep feedforward and recurrent neural networks. In: ECML

  8. He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV, pp 1026–1034

  9. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, pp 770–778

  10. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML

  11. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia. ACM, pp 675–678

  12. Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images

  13. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: NIPS

  14. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  15. Lee CY, Xie S, Gallagher PW, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS

  16. Li Z, Tang J (2015) Weakly supervised deep metric learning for community-contributed image retrieval. IEEE Trans Multimed 17(11):1989–1999

    Article  Google Scholar 

  17. Li Z, Tang J (2017) Weakly supervised deep matrix factorization for social image understanding. IEEE Trans Image Process 26(1):276–288

    Article  MathSciNet  Google Scholar 

  18. Liang M, Hu X (2015) Recurrent convolutional neural network for object recognition. In: CVPR

  19. Lin M, Chen Q, Yan S (2014) Network in network. In ICLR

  20. Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic models. In: ICML, vol 30

  21. Maaten LVD, Hinton G (2017) Visualizing data using t-sne. JMLR 9 (2605):2579–2605

    MATH  Google Scholar 

  22. Mishkin D, Matas J (2016) All you need is a good init. In: ICLR

  23. Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML

  24. Romero A, Ballas N, Kahou SE, Chassang A, Gatta C, Bengio Y Fitnets: Hints for thin deep nets. In: ICLR

  25. Shang W, Sohn K, Almeida D, Lee H (2016) Understanding and improving convolutional neural networks via concatenated rectified linear units. In: ICML

  26. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: ICLR

  27. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. JMLR 15:1929–1958

    MathSciNet  MATH  Google Scholar 

  28. Srivastava RK, Greff K, Schmidhuber J (2015) Highway networks. arXiv:1505.00387

  29. Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: CVPR, pp 1–9

  30. Wang Q, Gao J, Yuan Y (2017) A joint convolutional neural networks and context transfer for street scenes labeling. IEEE Trans Intell Transp Syst PP(99):1–14

    Google Scholar 

  31. Wang Q, Wan J, Yuan Y (2017) Deep metric learning for crowdedness regression. IEEE Trans Circuits Syst Video Technol PP(99):1–1

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the 973 Program (Project No. 2014CB347600), the National Natural Science Foundation of China (Grant No. 61772275, 61720106004, 61672285 and 61672304) and the Natural Science Foundation of Jiangsu Province (BK20170033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zechao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Li, Z. Deep networks with non-static activation function. Multimed Tools Appl 78, 197–211 (2019). https://doi.org/10.1007/s11042-018-5702-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5702-5

Keywords

Navigation