Skip to main content
Log in

View-invariant gait recognition based on kinect skeleton feature

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Gait recognition is a popular remote biometric identification technology. Its robustness against view variation is one of the challenges in the field of gait recognition. In this paper, the second-generation Kinect (2G–Kinect) is used as a tool to build a 3D–skeleton-based gait dataset, which includes both 2D silhouette images captured by 2G–Kinect and their corresponding 3D coordinates of skeleton joints. Given this dataset, a human walking model is constructed. Referring to the walking model, the length of some specific skeletons is selected as the static features, and the angles of swing limbs as the dynamic features, which are verified to be view-invariant. In addition, the gait recognition abilities of the static and dynamic features are investigated respectively. Given the investigation, a view-invariant gait recognition scheme is proposed based on the matching-level-fusion of the static and dynamic features, and the nearest neighbor (NN) method is used for recognition. Comparison between the existing Kinect-based gait recognition method and the proposed one on different datasets show that the proposed one has better recognition performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Andersson VO, Araujo RM (2015) Person identification using anthropometric and gait data from kinect sensor. In: Proc. AAAI Conference on Artificial Intelligence, 425–431

  2. Araujo RM, Graña G, Andersson V (2013) Towards skeleton biometric identification using the microsoft kinect sensor. In Proceedings of the 28th Annual ACM Symposium onApplied Computing (SAC '13). ACM, New York, USA, 21–26. https://doi.org/10.1145/2480362.2480369

  3. Bashir K, Xiang T, Gong S (2009) Gait recognition using gait entropy image. 3rd International Conference on Imaging for Crime Detection and Prevention (ICDP 2009), London, 1–6. https://doi.org/10.1049/ic.2009.0230

  4. Cappelli R, Ferrara M, Maltoni D Minutia Cylinder-Code: A New Representation and Matching Technique for Fingerprint Recognition. IEEE Trans Pattern Anal Mach Intell 32(12):2128–2141

  5. Cunado D, Nixon MS, Carter JN (1997) Using gait as a biometric, via phase-weighted magnitude spectra. Bigun J, Chollet G and Borgefors G (eds.). At Proceedings of 1st Int. Conf. on Audio and Video-Based Biometric Person Authentication, 95–102

  6. Faisal A (2015) Polash Paul Padma, and Gavrilova Marina L, Kinect-Based Gait Recognition Using Sequence of the Most Relevant Joint Relative Angles. Journal of WSCG 23(2):147–156

    Google Scholar 

  7. Goffredo M, Bouchrika I, Carter JN, Nixon MS (2010) Self-Calibrating View-Invariant Gait Biometrics. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 40(4):997–1008

    Article  Google Scholar 

  8. Guo Y, Xu G, Saburo T (1994) Understanding Human Motion Patterns. Proc IEEE Int’l Conf Pattern Recognition 2:325–329

    Article  Google Scholar 

  9. Hadid A, Ghahramani M, Bustard J, Nixon MS (2013) Improving Gait Biometrics under Spoofing Attacks, Proc. Image Analysis and Processing 8157:1–10

    Google Scholar 

  10. Han J, Bhanu B (2006) Individual Recognition Using Gait Energy Image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322

    Article  Google Scholar 

  11. Hofmann M, Geiger J, Bachmann S, Schuller B, Rigoll G (2014) The TUM Gait from Audio, Image and Depth (GAID) Database: Multimodal Recognition of Subjects and Traits. J Vis Commun Image Represent 25:195–206

    Article  Google Scholar 

  12. Hossain MA, Makihara Y, Wang J, Yagi Y (2010) Clothing-invariant gait identification using part-based clothing categorization and adaptive weight control. Proc Int’l Conf Pattern Recognition 43(6):2281–2291

    Article  Google Scholar 

  13. Hu M, Wang Y, Zhang Z, Little JJ, Huang D (2013) View-Invariant Discriminative Projection for Multi-View Gait-Based Human Identification. IEEE Transactions on Information Forensics and Security 8(12):2034–2045

    Article  Google Scholar 

  14. Iwama H, Okumura M, Makihara Y (2012) The OU-ISIR Gait Database Comprising the Large Population Dataset and Performance Evaluation of Gait Recognition. IEEE Transactions on Information Forensics and Security 7(5):1511–1521

    Article  Google Scholar 

  15. Jean F (2007) Bergevin R, Albu AB (2007) Computing view-normalized body parts trajectories. In: Proc. Canadian Conference on Computer and Robot Vision, pp. 89-96

  16. Johnson AY, Bobick AF (2001) A multi-view method for gait recognition using static body parameters. In: Bigun J, Smeraldi F (eds). Audio and Video-Based Biometric Person Authentication. AVBPA 2001. Lecture notes in computer science, vol 2091. Springer, Berlin, Heidelberg

  17. Kale A, Chowdhury AKR, Chellappa R (2003) Towards a view invariant gait recognition algorithm. Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, 143–150. https://doi.org/10.1109/AVSS.2003.1217914

  18. Kale A, Sundaresan A, Rajagopalan AN, Cuntoor NP, Roy-Chowdhury AK, Krüger V, Chellappa R (2004) Identification of Humans Using Gait. IEEE Trans Image Process 13(9):1163–1173

    Article  Google Scholar 

  19. Kastaniotis D, Theodorakopoulos I, Theoharatos C, Economou G, Fotopoulos S (2015) A Framework for Gait-Based Recognition Using Kinect. Pattern Recogn Lett 68:327–335

    Article  Google Scholar 

  20. Kozlowski LT, James E (1977) Cutting, Recognizing the Sex of a Walker from a Dynamic Point-Light Display. Percept Psychophys 21(6):575–580

    Article  Google Scholar 

  21. Krzeszowski T, Michalczuk A, Kwolek B, Switonski A, Josinski H (2013) Gait Recognition Based on Marker-Less 3D Motion Capture. 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, Krakow, 232–237. https://doi.org/10.1109/AVSS.2013.6636645

  22. Kusakunniran W, Wu Q, Zhang J, Li H (2012) Gait Recognition under Various Viewing Angles Based on Correlated Motion Regression. IEEE Transactions on Circuits and Systems for Video Technology 22(6):966–980

    Article  Google Scholar 

  23. Kusakunniran W, Wu Q, Zhang J, Li H, Liang W (2014) Recognizing Gaits Across Views Through Correlated Motion Co-Clustering. IEEE Transaction on Image Processing 23(2):696–709

    Article  MathSciNet  MATH  Google Scholar 

  24. Lam THW, Lee RST (2006) A New Representation for Human Gait Recognition: Motion Silhouettes Image (MSI). Proc Int’l Conf Advances in Biometrics 3832:612–618

    Article  Google Scholar 

  25. Lee S, Liu Y, Collins R (2007) Shape variation-based frieze pattern for robust gait recognition. IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, 1–8. https://doi.org/10.1109/CVPR.2007.383138

  26. Liang W, Ning H, Tan T, Hu W (2004) Fusion of Static and Dynamic Body Biometrics for Gait Recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(2):149–158

    Article  Google Scholar 

  27. Makihara Y, Sagawa R, Mukaigawa Y, Echigo T, Yagi Y (2006) Gait recognition using a view transformation model in the frequency domain. In: Proc. European Conference on Computer Vision, 151-163

  28. Makihara Y, Matovski DS, Nixon MS, Carter JN, and Yagi Y (2015) Gait recognition: databases, representations, and applications. Wiley Encyclopedia of Electrical and Electronics Engineering. 1–15. https://doi.org/10.1002/047134608X.W8261

  29. Marcolin F, Vezzetti E (2017) Novel Descriptors for Geometrical 3D Face Analysis. Multimedia Tools and Applications 76(12):13805–13834

    Article  Google Scholar 

  30. Milovanovic M, Minovic M, Starcevic D (2013) Walking in Colors: Human Gait Recognition Using Kinect and CBIR. IEEE MultiMedia 20(4):28–36

    Article  Google Scholar 

  31. Muramatsu D, Makihara Y, Yagi Y (2006) View Transformation Model Incorporating Quality Measures for Cross-View Gait Recognition. IEEE Transactions on Cybernetics 46(7):1602–1615

    Article  Google Scholar 

  32. Muramatsu D, Shiraishi A, Makihara Y, Uddin MZ, Yagi Y (2015) Gait-Based Person Recognition Using Arbitrary View Transformation Model. IEEE Trans Image Process 24(1):140–154

    Article  MathSciNet  Google Scholar 

  33. Pala F, Satta R, Fumera G, Roli F (2016) Multimodal Person Re-Identification Using RGB-D Cameras. IEEE Transactions on Circuits and Systems for Video Technology 26(4):788–799

    Article  Google Scholar 

  34. Pfister A, West AM, Bronner S, Noah JA (2014) Comparative Abilities of Microsoft Kinect and Vicon 3D Motion Capture for Gait Analysis. J Med Eng Technol 38:274–280

    Article  Google Scholar 

  35. Preis J, Kessel M, Werner M, Linnhoff-Popien C (2012) Gait recognition with kinect. In: Proc. the First Workshop on Kinect in Pervasive Computing, 1-4

  36. Rohr K (1994) Towards Models-Based Recognition of Human Movements in Image Sequences. Computer Vision, Graphics, and Image Processing (CVGIP): Image Understanding 59(1):94–115

    Article  Google Scholar 

  37. Sakoe H, Chiba S (1978) Dynamic Programming Algorithm Optimization for Spoken Word Recognition. IEEE Trans Acoust Speech Signal Process 26(1):43–49

    Article  MATH  Google Scholar 

  38. Shutler J, Grant M, Nixon MS, Carter JN (2002) On A Large Sequence-Based Human Gait Database. Applications and Science in Soft Computing 24:339–346

    Google Scholar 

  39. Sivapalan S, Chen D, Denman S, Sridharan S, Fookes C (2011) Gait energy volumes and frontal gait recognition using depth images. International Joint Conference on Biometrics (IJCB), Washington, DC, 1–6. https://doi.org/10.1109/IJCB.2011.6117504

  40. Stoia DI, Toth-Tascau M (2011) Influence of treadmill velocity on joint angles of lower limbs during human gait. E-Health and Bioengineering Conference (EHB), Iasi, 1–4

  41. Sudeep Sarkar P, Phillips J, Liu Z, Vega IR, Grother P, Bowyer KW (2005) The HumanID Gait Challenge Problem: Data Sets, Performance, and Analysis. IEEE Trans Pattern Anal Mach Intell 27(2):162–177

    Article  Google Scholar 

  42. Tanawongsuwan R, Bobick A (2001) Gait Recognition from Time-Normalized Joint-Angle Trajectories in the Walking Plane. Proc IEEE Int’l Conf Computer Vision and Pattern Recognition 2:726

    Google Scholar 

  43. Tsuji A, Makihara Y, Yagi Y (2010) Silhouette transformation based on walking speed for gait identification. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, 717–722. https://doi.org/10.1109/CVPR.2010.5540144

  44. Wang C, Zhang J, Jian P, Yuan X, Liang W, Image C-G (2010) A Novel Temporal Template for Gait Recognition. European Conference on Computer Vision 6311:257–270

    Google Scholar 

  45. Wang Y, Sun J, Li J, Zhao D (2016) Gait recognition based on 3D skeleton joints captured by Kinect. IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, 3151–3155. https://doi.org/10.1109/ICIP.2016.7532940

  46. Wei SE, Ramakrishna V, Kanade T, Sheikh Y. (2016) Convolutional Pose Machines, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 4724–4732. https://doi.org/10.1109/CVPR.2016.511

  47. Wu Z, Huang Y, Wang L, Wang X, Tan T (2017) A Comprehensive Study on Cross-View Gait Based Human Identification with Deep CNNs. IEEE Transactions on Pattern Analysis & Machine Intelligence 39(2):209–226

    Article  Google Scholar 

  48. Yamauchi K, Bhanu B, Saito H (2009) Recognition of Walking Humans in 3D: Initial Results. In: Proc. IEEE Int’l Conf. Computer Vision & Pattern Recognition Workshops, pp. 45–52

  49. Yang SXM, Larsen PK, Alkjær T, Simonsen EB, Lynnerup N (2014) Variability and Similarity of Gait as Evaluated by Joint Angles: Implications for Forensic Gait Analysis. J Forensic Sci 59:494–504

    Article  Google Scholar 

  50. Yang K, Dou Y, Lv S, Zhang F, Lv Q (2016) Relative distance features for gait recognition with kinect. J Vis Commun Image Represent 39:209–217

    Article  Google Scholar 

  51. Yu S, Tan D, Tan T (2006) A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition. Int’l Conf Pattern Recognition 4:441–444

    Google Scholar 

  52. Zhao G, Liu G, Li H, Pietikainen M (2006) 3D gait recognition using multiple cameras. 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, 529–534. https://doi.org/10.1109/FGR.2006.2

Download references

Acknowledgements

This work is supported by Natural Science Foundation for Distinguished Young Scholars of Shandong Province (JQ201718), National Science Foundation of China (61572298), and Key Research and Development Foundation of Shandong Province (2016GGX101009). The contact author is Jiande Sun (jiandesun@hotmail.com).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiande Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, Y., Li, J. et al. View-invariant gait recognition based on kinect skeleton feature. Multimed Tools Appl 77, 24909–24935 (2018). https://doi.org/10.1007/s11042-018-5722-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5722-1

Keywords

Navigation