Skip to main content
Log in

Dehazing of outdoor images using notch based integral guided filter

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The dehazing problem is an ill-posed and can be regularized by designing an efficient filter to refine the coarse estimated atmospheric veil. The most of existing dehazing techniques suffer from over-saturation, halo artifacts, and gradient reversal artifacts problems. In this paper, a dehazing technique is proposed to remove halo and gradient reversal artifacts problem. In this technique, a notch based integral guided filter is proposed. Moreover, the visibility restoration model is also modified to reduce over-saturation problem. The proposed dehazing technique is compared with seven well-known existing dehazing techniques over ten benchmark hazy images. The experimental results demonstrate that proposed technique is able to remove the haze from hazy images as well as significantly improve the image’s visibility. It also reveals that the restored image has little or no artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anwar MI, Khosla A (2017) Vision enhancement through single image fog removal. Eng Sci Technol Int J 20(3):1075–1083

    Article  Google Scholar 

  2. Chang HH, Chu WC (2012) Restoration algorithm for image noise removal using double bilateral filtering. J Electron Imaging 21(2):023,028–1

    Article  MathSciNet  Google Scholar 

  3. Chaudhury KN, Sage D, Unser M (2011) Fast bilateral filtering using trigonometric range kernels. IEEE Trans Image Process 20(12):3376–3382

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen BH, Huang SC, Cheng FC (2016) A high-efficiency and high-speed gain intervention refinement filter for haze removal. J Display Technol 12(7):753–759

    Article  Google Scholar 

  5. Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901

    Article  MathSciNet  MATH  Google Scholar 

  6. Chuangbai X, Hongyu Z, Jing Y, Pu Y (2015) Traffic image defogging method based on wls. Infrared Laser Eng 3:052

    Google Scholar 

  7. Cosmin Ancuti CDV Codruta O Ancuti (2016)

  8. Crebolder JM, Sloan RB (2004) Determining the effects of eyewear fogging on visual task performance. Appl Ergon 35(4):371–381

    Article  Google Scholar 

  9. Cui T, Tian J, Wang E, Tang Y (2017) Single image dehazing by latent region-segmentation based transmission estimation and weighted l1-norm regularisation. IET Image Process 11(2):145–154

    Article  Google Scholar 

  10. Ding W, Li Y, Liu H (2016) Efficient vanishing point detection method in unstructured road environments based on dark channel prior. IET Comput Vis 10 (8):852–860

    Article  Google Scholar 

  11. El Khoury J, Le Moan S, Thomas JB, Mansouri A (2017) Color and sharpness assessment of single image dehazing. Multimedia Tools and Applications:1–22. https://doi.org/10.1007/s11042-017-5122-y

    Article  Google Scholar 

  12. Fan X, Shin H (2016) Road vanishing point detection using weber adaptive local filter and salient-block-wise weighted soft voting. IET Comput Vis 10(6):503–512

    Article  Google Scholar 

  13. Fang S, Shi Q, Cao Y (2013) Adaptive removal of real noise from a single image. J Electron Imaging 22(3):033,014–033,014

    Article  Google Scholar 

  14. Fattal R (2008) Single image dehazing. ACM Trans Graph (TOG) 27(3):72

    Article  Google Scholar 

  15. Fattal R (2014) Dehazing using color-lines. ACM Trans Graph (TOG) 34(1):13

    Article  Google Scholar 

  16. Fu L, Peng G, Song W (2016) Histogram-based cost aggregation strategy with joint bilateral filtering for stereo matching. IET Comput Vis 10(3):173–181

    Article  Google Scholar 

  17. Galdran A, Vazquez-Corral J, Pardo D, Bertalmío M (2017) Fusion-based variational image dehazing. IEEE Signal Process Lett 24(2):151–155

    MATH  Google Scholar 

  18. Gibson KB, Nguyen TQ (2013) An analysis of single image defogging methods using a color ellipsoid framework. EURASIP J Image Video Process 2013(1):37

    Article  Google Scholar 

  19. Gu X, Huang X, Tokuta A (2017) Multiscale spatially regularised correlation filters for visual tracking. IET Comput Vis 11(3):220–225

    Article  Google Scholar 

  20. Guo JM, Syue JY, Radzicki V, Lee H (2017) An efficient fusion-based defogging. IEEE Transactions on Image Processing

  21. Guo L, Li S, Hu W, Wu J, Tu B, He W, Ou X, Zhang G (2017) Sub-pixel level defect detection based on notch filter and image registration. International Journal of Pattern Recognition and Artificial Intelligence, pp 1854016

  22. Hao D, Li Q, Li C (2017) Single-image-based rain streak removal using multidimensional variational mode decomposition and bilateral filter. J Electron Imaging 26(1):013,020–013,020

    Article  MathSciNet  Google Scholar 

  23. Hautière N, Tarel JP, Aubert D (2007) Towards fog-free in-vehicle vision systems through contrast restoration. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE, pp 1–8

  24. Hautiere N, Tarel JP, Aubert D, Dumont E (2011) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereology 27(2):87–95

    Article  MathSciNet  MATH  Google Scholar 

  25. He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353

    Article  Google Scholar 

  26. Jang DW, Park RH (2017) Colour image dehazing using near-infrared fusion. IET Image Process 11(8):587–594

    Article  Google Scholar 

  27. Jha DK, Gupta B, Lamba SS (2016) l2-norm-based prior for haze-removal from single image. IET Comput Vis 10(5):331–341

    Article  Google Scholar 

  28. Jiang B, Meng H, Zhao J, Ma X, Jiang S, Wang L, Zhou Y, Ru Y, Ru C (2017a) Single image fog and haze removal based on self-adaptive guided image filter and color channel information of sky region. Multimedia Tools and Applications, pp 1–18

  29. Jiang Y, Sun C, Zhao Y, Yang L (2017) Fog density estimation and image defogging based on surrogate modeling for optical depth. IEEE Trans Image Process 26(7):3397–3409

    Article  MathSciNet  MATH  Google Scholar 

  30. Kishan H, Seelamantula CS (2015) Patch-based and multiresolution optimum bilateral filters for denoising images corrupted by gaussian noise. J Electron Imaging 24(5):053,021–053,021

    Article  Google Scholar 

  31. Koschmieder H (1938) Luftlicht und sichtweite. Naturwissenschaften 26(32):521–528

    Article  Google Scholar 

  32. Li B, Wang S, Zheng J, Zheng L (2014) Single image haze removal using content-adaptive dark channel and post enhancement. IET Comput Vis 8(2):131–140

    Article  Google Scholar 

  33. Li J, Zhang H, Yuan D, Sun M (2015) Single image dehazing using the change of detail prior. Neurocomputing 156:1–11

    Article  Google Scholar 

  34. Li Z, Zheng J, Zhu Z, Yao W, Wu S (2015) Weighted guided image filtering. IEEE Trans Image process 24(1):120–129

    Article  MathSciNet  MATH  Google Scholar 

  35. Lian X, Pang Y, Yang A (2017) Learning intensity and detail mapping parameters for dehazing. Multimedia Tools and Applications:1–26. https://doi.org/10.1007/s11042-017-5142-7

    Article  Google Scholar 

  36. Liu W, Chen X, Chu X, Wu Y, Lv J (2016) Haze removal for a single inland waterway image using sky segmentation and dark channel prior. IET Image Process 10(12):996–1006

    Article  Google Scholar 

  37. Liu X, Zhang H, Tang YY, Du JX (2016) Scene-adaptive single image dehazing via opening dark channel model. IET Image Process 10(11):877–884

    Article  Google Scholar 

  38. Long J, Shi Z, Tang W, Zhang C (2014) Single remote sensing image dehazing. IEEE Geosci Remote Sens Lett 11(1):59–63

    Article  Google Scholar 

  39. McCartney EJ (1976) Optics of the atmosphere: scattering by molecules and particles. Wiley, New York, p 421

    Google Scholar 

  40. MODIS (2016) Global land cover facility. http://glcf.umd.edu/

  41. Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724

    Article  Google Scholar 

  42. Narasimhan SG, Nayar SK (2003) Interactive (de) weathering of an image using physical models. In: IEEE Workshop on color and photometric Methods in computer Vision. France, vol 6, p 1

  43. Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: 1999. The Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, vol 2, pp 820–827

  44. Nishino K, Kratz L, Lombardi S (2012) Bayesian defogging. Int J Comput Vis 98(3):263–278

    Article  MathSciNet  Google Scholar 

  45. Papari G, Idowu N, Varslot T (2016) Fast bilateral filtering for denoising large 3d images. IEEE Trans Image Process 26(1):251–261

    Article  MathSciNet  MATH  Google Scholar 

  46. Park J, Han JH, Lee BU (2014) Performance of bilateral filtering on gaussian noise. J Electron Imaging 23(4):043,024–043,024

    Article  Google Scholar 

  47. Riaz I, Fan X, Shin H (2016) Single image dehazing with bright object handling. IET Comput Vis 10(8):817–827

    Article  Google Scholar 

  48. Serikawa S, Lu H (2014) Underwater image dehazing using joint trilateral filter. Comput Electr Eng 40(1):41–50

    Article  Google Scholar 

  49. Sheng H, Zhang S, Cao X, Fang Y, Xiong Z (2017) Geometric occlusion analysis in depth estimation using integral guided filter for light-field image. IEEE Trans Image Process 26(12):5758–5771

    Article  MathSciNet  MATH  Google Scholar 

  50. Singh D, Kumar V (2017) Dehazing of remote sensing images using fourth-order partial differential equations based trilateral filter. IET Computer Vision

  51. Singh D, Kumar V (2018) Defogging of road images using gain coefficient-based trilateral filter. J Electron Imaging 27(1):013004

    Article  Google Scholar 

  52. Singh D, Kumar V (2017) Dehazing of remote sensing images using improved restoration model based dark channel prior. Imaging Sci J 65(5):282–292

    Article  Google Scholar 

  53. Singh D, Kumar V (2017) Comprehensive survey on haze removal techniques. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-5321-6

    Article  Google Scholar 

  54. Singh D, Kumar V (2017) Modified gain intervention filter based dehazing technique. J Mod Opt 64(20):2165–2178

    Article  Google Scholar 

  55. Singh D, Garg D, Singh Pannu H (2017) Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci J 65(2):108–114

    Article  Google Scholar 

  56. Soumya T, Thampi SM (2016) Recolorizing dark regions to enhance night surveillance video. Multimedia Tools and Applications 76(22):1–17

    Google Scholar 

  57. Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision. IEEE, pp 2201–2208

  58. Tripathi AK, Mukhopadhyay S (2012) Removal of fog from images: A review. IETE Techn Rev 29(2):148–156

    Article  Google Scholar 

  59. Wang D, Zhu J (2015) Fast smoothing technique with edge preservation for single image dehazing. IET Comput Vis 9(6):950–959

    Article  Google Scholar 

  60. Wang JB, He N, Zhang LL, Lu K (2015) Single image dehazing with a physical model and dark channel prior. Neurocomputing 149:718–728

    Article  Google Scholar 

  61. Wang L, Xiao L, Liu H, Wei Z (2015) Local brightness adaptive image colour enhancement with wasserstein distance. IET Image Process 9(1):43–53

    Article  Google Scholar 

  62. Wang W, Hua M (2013) Extracting dominant textures in real time with multi-scale hue-saturation-intensity histograms. IEEE Trans Image Process 22(11):4237–4248

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang W, Yuan X (2017) Recent advances in image dehazing. IEEE/CAA J Autom Sin 4(3):410–436. https://doi.org/10.1109/JAS.2017.7510532

    Article  MathSciNet  Google Scholar 

  64. Wang W, Yuan X, Wu X, Liu Y (2017) Fast image dehazing method based on linear transformation. IEEE Trans Multimed 19(6):1142–1155

    Article  Google Scholar 

  65. Wang Z, Feng Y (2014) Fast single haze image enhancement. Comput Electr Eng 40(3):785–795

    Article  Google Scholar 

  66. Wang Z, Hardeberg JY (2012) Development of an adaptive bilateral filter for evaluating color image difference. J Electron Imaging 21(2):023,021–1

    Article  Google Scholar 

  67. Xiang R, Zhu X, Wu F, Jiang X, Xu Q (2017) Guided filter based on multikernel fusion. Journal of Electronic Imaging 26(3):33027

    Article  Google Scholar 

  68. Xie B, Guo F, Cai Z (2010) Improved single image dehazing using dark channel prior and multi-scale retinex. In: 2010 International Conference on Intelligent System Design and Engineering Application (ISDEA). IEEE, vol 1, pp 848–851

  69. Xu H, Guo J, Liu Q, Ye L (2012) Fast image dehazing using improved dark channel prior. In: 2012 IEEE International Conference on Information Science and Technology. IEEE, pp 663–667

  70. Xu Y, Wen J, Fei L, Zhang Z (2016) Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 4:165–188

    Article  Google Scholar 

  71. Yang HY, Chen PY, Huang CC, Zhuang YZ, Shiau YH (2011) Low complexity underwater image enhancement based on dark channel prior. In: 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications (IBICA). IEEE, pp 17–20

  72. Yoon SM (2016) Visibility enhancement of fog-degraded image using adaptive total variation minimisation. The Imaging Sci J 64(2):82–86

    Article  Google Scholar 

  73. Zhang L, Shen P, Peng X, Zhu G, Song J, Wei W, Song H (2016) Simultaneous enhancement and noise reduction of a single low-light image. IET Image Process 10(11):840–847

    Article  Google Scholar 

  74. Zhang W, Hou X (2017) Light source point cluster selection-based atmospheric light estimation. Multimedia Tools and Applications 77(3):1–12

    MathSciNet  Google Scholar 

  75. Zheng L, Shi H, Gu M (1740) Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction. Mod Phys Lett B 31(19-21):044

    Google Scholar 

  76. Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533

    Article  MathSciNet  MATH  Google Scholar 

  77. Zhu X, Xiang R, Wu F, Jiang X (1740) Single image haze removal based on fusion darkness channel prior. Mod Phys Lett B 31(19-21):037

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilbag Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Kumar, V. Dehazing of outdoor images using notch based integral guided filter. Multimed Tools Appl 77, 27363–27386 (2018). https://doi.org/10.1007/s11042-018-5924-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5924-6

Keywords

Navigation