Skip to main content
Log in

DCNR: deep cube CNN with random forest for hyperspectral image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Hyperspectral Image (HSI) classification is one of the fundamental tasks in the field of remote sensing data analysis. CNN (Convolutional Neural Network) has been proven to be an effective deep learning model, which can extract high-level features directly from the raw data and thereby utilize rich information contained in HSI data. However, labor cost to label enough HIS data for training model is usually expensive, so that it is a strong demand of utilizing limited training data to get a satisfied classification accuracy. In this paper, we put forward a deep cube CNN model – DCNR, which is composed of a cube neighbor HSI pixels strategy, a deep CNN and a random forest classifier. In DCNR model, cubic samples, containing spectral-spatial information, are generated by putting each target pixel and its neighbors together. Then features with high representative ability, extracted by applying a specially designed cube CNN model on each cubic sample, are fed into the random forest classifier for the classification of the target pixel. Results show that DCNR model can achieve classification accuracy of 96.78%, 96.08% and 94.85% on KSC, IP and SA datasets respectively with 20% samples as training set, and 85.03%, 83.45 and 62.17% on KSC, IP and SA datasets respectively with only 1% samples as training set, significantly outperforming random forest and cube CNN models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alsmirat MA, Jararweh Y, Al-Ayyoub M et al (2017) Accelerating compute intensive medical imaging segmentation algorithms using hybrid CPU-GPU implementations[J]. Multimed Tools Appl 76(3):3537–3555

    Article  Google Scholar 

  2. AlZain MA, Li AS, Soh B, Pardede E (2015) Multi-cloud data management using Shamir's secret sharing and quantum byzantine agreement schemes[J]. Int J Cloud Appl Comput (IJCAC) 5(3):35–52

    Google Scholar 

  3. Atawneh S, Almomani A, Al Bazar H et al (2017) Secure and imperceptible digital image steganographic algorithm based on diamond encoding in DWT domain[J]. Multimed Tools Appl 76(18):18451–18472

    Article  Google Scholar 

  4. Bergstra J, Breuleux O, Bastien F, et al. (2010) Theano: a CPU and GPU math compiler in Python[C]//proc. 9th Python in Science Conf : 1–7

  5. Bioucas-Dias JM, Plaza A, Camps-Valls G et al (2013) Hyperspectral remote sensing data analysis and future challenges[J]. Geosci Remote Sens Mag, IEEE 1(2):6–36

    Article  Google Scholar 

  6. Camps-Valls G, Bruzzone L (2005) Kernel-based methods for hyperspectral image classification[J]. IEEE Trans Geosci Remote Sens 43(6):1351–1362

    Article  Google Scholar 

  7. Camps-Valls G, Tuia D, Bruzzone L et al (2013) Advances in hyperspectral image classification: earth monitoring with statistical learning methods[J]. IEEE Signal Process Mag 31(1):45–54

    Article  Google Scholar 

  8. Chan W, Jaitly N, Le Q et al. (2016) Listen, attend and spell: a neural network for large vocabulary conversational speech recognition[C]//acoustics, speech and signal processing (ICASSP). 2016 I.E. Int Conf. IEEE: 4960–4964

  9. Chang X, Ma Z, Lin M, Yang Y, Hauptmann AG (2017) Feature interaction augmented sparse learning for fast kinect motion detection[J]. IEEE Trans Image Process 26(8):3911–3920

    Article  MathSciNet  Google Scholar 

  10. Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection[J]. IEEE transactions on cybernetics 47(5):1180–1197

    Article  Google Scholar 

  11. Chang X, Yang Y (2017) Semisupervised feature analysis by mining correlations among multiple tasks[J]. IEEE Trans Neural Netwrks Learn Syst 28(10):2294–2305

    Article  MathSciNet  Google Scholar 

  12. Chang X, Yu YL, Yang Y, Xing EP (2017) Semantic pooling for complex event analysis in untrimmed videos[J]. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632

    Article  Google Scholar 

  13. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data[J]. IEEE J Select Top Appl Earth Observ Remote Sens 7(6):2094–2107

    Article  Google Scholar 

  14. Chen Y, Zhao X, Jia X (2015) Spectral–spatial classification of hyperspectral data based on deep belief network[J]. IEEE J Select Top Appl Earth Observ Remote Sens 8(6):2381–2392

    Article  Google Scholar 

  15. Gu J, Wang Z, Kuen J, et al. (2015) Recent advances in convolutional neural networks[J]. Comput Sci

  16. Gupta S, Gupta BB (2018) XSS-secure as a service for the platforms of online social network-based multimedia web applications in cloud[J]. Multimed Tools Appl 77(4):4829–4861

    Article  Google Scholar 

  17. Ham J, Chen Y, Crawford MM et al (2005) Investigation of the random forest framework for classification of hyperspectral data[J]. IEEE Trans Geosci Remote Sens 43(3):492–501

    Article  Google Scholar 

  18. Harsanyi JC, Chang CI (1994) Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach[J]. IEEE Trans Geosci Remote Sens 32(4):779–785

    Article  Google Scholar 

  19. Heaton JB, Polson NG, Witte JH (2017) Deep learning for finance: deep portfolios[J]. Appl Stoch Model Bus Ind 33(1):3–12

    Article  MathSciNet  Google Scholar 

  20. Hu W, Huang Y, Wei L et al. (2015) Deep convolutional neural networks for hyperspectral image classification[J]. J Sens: 2015

  21. IGI Global (2016) Handbook of research on modern cryptographic solutions for computer and cyber security[M]

  22. Jararweh Y, Al-Ayyoub M, Fakirah M, et al. (2017) Improving the performance of the needleman-wunsch algorithm using parallelization and vectorization techniques[J]. Multimed Tools Appl: 1–17

  23. Kang X, Li S, Benediktsson JA (2014) Spectral–spatial hyperspectral image classification with edge-preserving filtering[J]. IEEE Trans Geosci Remote Sens 52(5):2666–2677

    Article  Google Scholar 

  24. Kim Y (2014) Convolutional neural networks for sentence classification[J]. arXiv preprint arXiv:1408.5882

  25. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks[C]//. Adv Neural Inf Proces Syst: 1097–1105

  26. LeCun Y, Bengio Y, Hinton G (2015) Deep learning[J]. Nature 521(7553):436–444

    Article  Google Scholar 

  27. Leng J, Li T, Bai G, et al. (2016) Cube-CNN-SVM: a novel hyperspectral image classification method[C]//tools with artificial intelligence (ICTAI). 2016 I.E. 28th Int Conf. IEEE: 1027–1034

  28. Li J, Huang X, Gamba P, Bioucas-Dias JMB, Zhang L, Benediktsson JA, Plaza A (2015) Multiple feature learning for hyperspectral image classification[J]. IEEE Trans Geosci Remote Sens 53(3):1592–1606

    Article  Google Scholar 

  29. Li Y, Peng Z, Liang D, Chang H, Cai Z (2016) Facial age estimation by using stacked feature composition and selection. Vis Comput 32(12):1525–1536. https://doi.org/10.1007/s00371-015-1137-4

    Article  Google Scholar 

  30. Li W, Prasad S, Fowler JE, Bruce LM (2011) Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification[J]. IEEE Geosci Remote Sens Lett 8(5):894–898

    Article  Google Scholar 

  31. Li Y, Wang G, Nie L, Wang Q, Tan W (2018) Distance metric optimization driven convolutional neural network for age invariant face recognition[J]. Pattern Recogn 75:51–62. https://doi.org/10.1016/j.patcog.2017.10.015

    Article  Google Scholar 

  32. Liaw A, Wiener M (2002) Classification and regression by random forest[J]. R News 2(3):18–22

    Google Scholar 

  33. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis[J]. Med Image Anal 42:60–88

    Article  Google Scholar 

  34. Maggiori E, Tarabalka Y, Charpiat G, Alliez P (2017) Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Trans Geosci Remote Sens 55(2):645–657

    Article  Google Scholar 

  35. Mairal J, Bach F, Ponce J et al. (2009) Online dictionary learning for sparse coding[C]//. Int Conf Mach Learn, ICML 2009, Montreal, Quebec, Canada, June. DBLP:689–696

  36. Majumder N, Poria S, Gelbukh A, Cambria E (2017) Deep learning-based document modeling for personality detection from text[J]. IEEE Intell Syst 32(2):74–79

    Article  Google Scholar 

  37. Nair V, Hinton G E. (2010) Rectified linear units improve restricted Boltzmann machines[C]//. Int Conf Mach Learn. DBLP, 807–814

  38. Qi CR, Su H, Mo K et al (2017) Pointnet: deep learning on point sets for 3d classification and segmentation[J]. Proc Comput Vision Pattern Recogn (CVPR), IEEE 1(2):4

    Google Scholar 

  39. Quang D, Xie X, Dan Q (2016) A hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences[J]. Nucleic Acids Res 44(11):e107

    Article  Google Scholar 

  40. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556,

  41. Vincent P, Larochelle H, Bengio Y et al. (2008) Extracting and composing robust features with denoising autoencoders[C]//. Int Conf :1096–1103

  42. Vincent P, Larochelle H, Lajoie I et al (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion.[J]. J Mach Learn Res 11(12):3371–3408

    MathSciNet  MATH  Google Scholar 

  43. Wang K, Zhang D, Ya L, Zhang R, Lin L (2017) Cost-effective active learning for deep image classification. IEEE Trans Circ Syst Video Technol (T-CSVT) 27(12):2591–2600

    Article  Google Scholar 

  44. Xia J, Du P, He X et al (2014) Hyperspectral remote sensing image classification based on rotation forest[J]. IEEE Geosci Remote Sens Lett 11(1):239–243

    Article  Google Scholar 

  45. Xie L, Li G, Xiao M, Peng L, Chen Q (2017) Hyperspectral image classification using discrete space model and support vector machines[J]. IEEE Geosci Remote Sens Lett 14(3):374–378

    Article  Google Scholar 

  46. Yuan C, Li X, Wu QMJ et al (2017) Fingerprint liveness detection from different fingerprint materials using convolutional neural network and principal component analysis[J].CMC: computers. Mater Continua 53(3):357–371. https://doi.org/10.3970/cmc.2017.053.357

    Article  Google Scholar 

  47. Zeng S, Bai J, Jiang L, et al. (2017) Multiple kernel fuzzy discriminant analysis for hyperspectral imaging classification[C]//fuzzy systems (FUZZ-IEEE). 2017 I.E. Int Conf IEEE: 1–6

  48. Zhang L, Zhang L, Tao D, Huang X (2012) On combining multiple features for hyperspectral remote sensing image classification[J]. IEEE Trans Geosci Remote Sens 50(3):879–893

    Article  Google Scholar 

  49. Zhao W, Du S (2016) Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction and deep learning approach[J]. IEEE Trans Geosci Remote Sens 54(8):4544–4554

    Article  Google Scholar 

Download references

Funding

This study was funded by the Natural Science Foundation of Tianjin under Grant No. 16JCYBJC15200, the Major Science and Technology Program of Big Data and Cloud Computing of Tianjin No. 15ZXDSGX00020, the Science and Technology Commission of Tianjin Binhai New Area No. BHXQKJXM-PT-ZJSHJ-2017005, the National Key Research and Development Program of China (2016YFC0400709), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Leng, J., Kong, L. et al. DCNR: deep cube CNN with random forest for hyperspectral image classification. Multimed Tools Appl 78, 3411–3433 (2019). https://doi.org/10.1007/s11042-018-5986-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5986-5

Keywords

Navigation