Skip to main content
Log in

Distinguishable zero-watermarking scheme with similarity-based retrieval for digital rights Management of Fundus Image

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Zero-watermarking scheme can provide durable and distortion-free digital rights management (DRM) for fundus image which plays an important role in diagnosis of ocular diseases. However, existing zero-watermarking schemes probably identify a similar fundus image as a copy, because they rarely consider the distinguishability for image. In addition, when the number of fundus images is large, it is difficult to obtain corresponding ownership shares accurately for copyright identification, because there is no retrieval mechanism in these schemes. To address these issues, a distinguishable zero-watermarking scheme which fuses similarity-based retrieval is proposed for DRM of fundus image. In our proposed scheme, distinguishable and robust features of fundus images are extracted based on the gray-scale variation. The ownership shares are constructed using visual secret sharing (VSS) by combining watermark and the master shares generated from these features. Once a suspected fundus image is found, the similarity-based retrieval is performed to retrieve the corresponding ownership share based on the feature of suspected image. After that, the copyright is identified by stacking the master share of suspected image and the retrieved ownership share. Experimental results on three public databases demonstrate that 1) Ownership shares corresponding to specific fundus images can be retrieved precisely. When fixing the false positive rate to 0.001, the mean false negative rates are not higher than 0.0693. 2) Copyrights of fundus images can be identified accurately and reliably. The mean bit error rates of recovered watermark are not higher than 0.0460.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. An L, Gao X, Yuan Y, Tao D, Deng C, Ji F (2012) Content-adaptive reliable robust lossless data embedding. Neurocomputing 79:1–11

    Article  Google Scholar 

  2. An L, Gao X, Li X, Tao D, Deng C, Li J (2012) Robust reversible watermarking via clustering and enhanced pixel-wise masking. IEEE T Image Process 21(8):3598–36112

    Article  MathSciNet  Google Scholar 

  3. Bock R, Meier J, Nyúl LG, Hornegger J, Michelson G (2010) Glaucoma risk index: automated glaucoma detection from color fundus images. Med Image Anal 14(3):471–481

    Article  Google Scholar 

  4. Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein JC (2014) Feedback on a publicly distributed image database: the MESSIDOR database. Image Analysis and Stereology 33(3):231–234

    Article  Google Scholar 

  5. Deng X, Mao Y, Hu J (2012) A novel lossless robust medical image watermarking algorithm based on huffman coding and k-means clustering. JDCTA 6(13):368–377

    Article  Google Scholar 

  6. Dong P, Brankov JG, Galatsanos NP et al (2005) Digital watermarking robust to geometric distortions. IEEE T Image Process 14(12):2140–2150

    Article  Google Scholar 

  7. Dong C, Zhang H, Li J, Chen YW (2012) Robust zero-watermarking for medical image based on DCT. In: Int. Conf. Computer Sciences and Convergence Information Technology (ICCIT), pp 900–904

  8. Esmaeili MM, Fatourechi M, Ward RK (2011) A robust and fast video copy detection system using content-based fingerprinting. IEEE T Inf Foren Sec 6(1):213–226

    Article  Google Scholar 

  9. Gao G, Jiang G (2013) A lossless copyright authentication scheme based on Bessel-Fourier moment and extreme learning machine in curvature-feature domain. J Syst Softw 86(1):222–232

    Article  Google Scholar 

  10. Gao G, Jiang G (2015) Bessel-Fourier moment-based robust image zero-watermarking. Multimed Tools Appl 74(3):841–858

    Article  Google Scholar 

  11. Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin KW, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226

    Article  Google Scholar 

  12. Gunjal BL, Mali SN (2012) ROI based embedded watermarking of medical images for secured communication in telemedicine. Int J Comput Commun Eng 6(48):293–298

    Google Scholar 

  13. Han B, Cai L, Li W (2015) Zero-watermarking algorithm for medical volume data based on legendre chaotic neural network and perceptual hashing. IJGDC 8(1):201–212

    Article  Google Scholar 

  14. Lee HK, Kim H J, Kwon KR, Lee JK (2005) ROI medical image watermarking using DWT and bit-plane. In Asia-Pacific Conf Communications, pp 512–515

  15. Lei B, Tan EL, Chen S, Ni D, Wang T, Lei H (2014) Reversible watermarking scheme for medical image based on differential evolution. Expert Syst Appl 41(3):3178–3188

    Article  Google Scholar 

  16. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: recognizing complex activities from sensor data. In: International Conference on Artif Intell, pp 1617–1623

  17. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning. In: International Conference on Artif Intell

  18. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  19. Liu X, Li F, Du J et al (2017) A robust and synthesized-unseen watermarking for the DRM of DIBR-based 3D video. Neurocomputing 222:155–169

    Article  Google Scholar 

  20. Mao J, Xiao G, Sheng W, Hu Y, Qu Z (2016) A method for video authenticity based on the fingerprint of scene frame. Neurocomputing 173(3):2022–2032

    Article  Google Scholar 

  21. Memon NA, Keerio ZA, Abbasi F (2013) Dual watermarking of CT scan medical images for content authentication and copyright protection. In Int. Conf. Multi topic (IMTIC), pp 173–183

    Google Scholar 

  22. Naor M, Shamir A (1995) Visual cryptography. In: Advances in cryptology, pp 1–12

    Google Scholar 

  23. Pandey R, Singh AK, Kumar B, Mohan A (2016) A Iris based secure NROI multiple eye image watermarking for teleophthalmology. Multimed Tools Appl 75(22):14381–14397

    Article  Google Scholar 

  24. Parah SA, Sheikh JA, Ahad F, Loan AN, Bhat GM (2017) Information hiding in medical images: a robust medical image watermarking system for E-healthcare. Multimed Tools Appl 76(8):10599–10633

    Article  Google Scholar 

  25. Priyanka SM (2016) Region-based hybrid medical image watermarking for secure telemedicine applications. Multimed Tools Appl 76(3):3617–3647

    Article  Google Scholar 

  26. Rawat S, Raman B (2012) A blind watermarking algorithm based on fractional Fourier transform and visual cryptography. Signal Process 92(6):1480–1491

    Article  Google Scholar 

  27. Sarkar A, Singh V, Ghosh P, Manjunath BS, Singh A (2010) Efficient and robust detection of duplicate videos in a large database. IEEE T Circ Syst Vid 20(6):870–885

    Article  Google Scholar 

  28. Seenivasagam V, Velumani R (2013) A QR code based zero-watermarking scheme for authentication of medical images in teleradiology cloud. Comput Math Method M. https://doi.org/10.1155/2013/516465

    Article  MathSciNet  Google Scholar 

  29. Singh TR, Singh KM, Roy S (2013) Video watermarking scheme based on visual cryptography and scene change detection. AEU-Int J Electron Commun 67(8):645–651

    Article  Google Scholar 

  30. Sivaswamy J, Krishnadas SR, Chakravarty A, Joshi GD, Tabish AS (2015) A comprehensive retinal image dataset for the assessment of glaucoma from the optic nerve head analysis. JSM Biomedical Imaging Data Papers 2(1):1004

    Google Scholar 

  31. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE T Med Imaging 23(4):501–509

    Article  Google Scholar 

  32. Vellaisamy S, Ramesh V (2014) Inversion attack resilient zero-watermarking scheme for medical image authentication. IET Image Process 8(12):718–727

    Article  Google Scholar 

  33. Wolfgang RB, Delp EJ (1996) A watermark for digital images. In Proc. Int. Conf. Image process (ICIP), pp 219–222

  34. Walter T, Klein JC, Massin P, Erginay A (2002) A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE T Med Imaging 21(10):1236–1243

    Article  Google Scholar 

  35. Zhu C, Zou B, Xiang Y, Cui J, Wu H (2016) An ensemble retinal vessel segmentation based on supervised learning in fundus images. Chin J Electron 25(3):503–511

    Article  Google Scholar 

  36. Zhu C, Zou B, Zhao R, Cui J, Duan X, Chen Z, Liang Y (2017) Retinal vessel segmentation in colour fundus images using extreme learning machine. Comput Med Imaging Graph 55:68–77

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Natural Science Foundations of China (61573380, 61602527), Natural Science Foundation of Hunan Province (2017JJ3416) and China Postdoctoral Science Foundation (2017M612585).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, B., Du, J., Liu, X. et al. Distinguishable zero-watermarking scheme with similarity-based retrieval for digital rights Management of Fundus Image. Multimed Tools Appl 77, 28685–28708 (2018). https://doi.org/10.1007/s11042-018-5995-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5995-4

Keywords

Navigation