Skip to main content
Log in

Undersampled CS image reconstruction using nonconvex nonsmooth mixed constraints

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Compressed sensing magnetic resonance imaging (CS-MRI) has attracted considerable attention due to its great potential in reducing scanning time and guaranteeing high-quality reconstruction. In conventional CS-MRI framework, the total variation (TV) penalty and L1-norm constraint on wavelet coefficients are commonly combined to reduce the reconstruction error. However, TV sometimes tends to cause staircase-like artifacts due to its nature in favoring piecewise constant solution. To overcome the model-dependent deficiency, a hybrid TV (TV1,2) regularizer is introduced in this paper by combining TV with its second-order version (TV2). It is well known that the wavelet coefficients of MR images are not only approximately sparse, but also have the property of tree-structured hierarchical sparsity. Therefore, a L0-regularized tree-structured sparsity constraint is proposed to better represent the measure of sparseness in wavelet domain. In what follows, we present our new CS-MRI framework by combining the TV1,2 regularizer and L0-regularized tree-structured sparsity constraint. However, the combination makes CS-MRI problem difficult to handle due to the nonconvex and nonsmooth natures of mixed constraints. To achieve solution stability, the resulting composite minimization problem is decomposed into several simpler subproblems. Each of these subproblems has a closed-form solution or could be efficiently solved using existing numerical method. The results from simulation and in vivo experiments have demonstrated the good performance of our proposed method compared with several conventional MRI reconstruction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Sum-of-squares (SoS) method calculates the root-mean-square average of full FOV images associated with the different coils, which does not use any knowledge of the multi-channel coil sensitivities [39].

Abbreviations

CS:

Compressed sensing

MRI:

Magnetic resonance imaging

TV:

Total variation

MTV:

Multichannel total variation

TGV:

Total generalized variation

NLTV:

Nonlocal total variation

SGTV:

Structure-guided total variation

HDTV:

Higher-degree total variation

CG:

Conjugate gradient

FISTA:

Fast iterative shrinkage/threshold algorithm

MDAL:

Mean doubly augmented Lagrangian

FCSA:

Fast composite splitting algorithm

CSD:

Composite splitting denoising

PSNR:

Peak signal-to-noise ratio

MSSIM:

Mean structural similarity

RLNE:

Relative L2 norm error

References

  1. Baraniuk RG, Cevher V, Duarte MF, Hegde C (2010) Model-based compressive sensing. IEEE Trans Inform Theory 56(4):1982–2001

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck A, Teboulle M (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans Image Process 18(11):2419–2434

    Article  MathSciNet  MATH  Google Scholar 

  3. Bredies K, Kunisch K, Pock T (2010) Total generalized variation. SIAM J Imaging Sci 3(3):492–526

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan RH, Tao M, Yuan X (2013) Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J Imaging Sci 6(1):680–697

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan T, Marquina A, Mulet P (2009) High-order total variation-based image restoration. SIAM J Sci Comput 22(2):503–516

    Article  MathSciNet  MATH  Google Scholar 

  7. Chartrand R (2009) Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data. In: Proc IEEE ISBI, pp 262-265

  8. Chen C, Huang J (2012) Compressive sensing MRI with wavelet tree sparsity. In: Proc NIPS, pp 1124-1132

  9. Chen C, Huang J (2014) The benefit of tree sparsity in accelerated MRI. Med Image Anal 18(6):834–842

    Article  Google Scholar 

  10. Chen HZ, Song JP, Tai XC (2009) A dual algorithm for minimization of the LLT model. Adv Comput Math 31(1-3):115–130

    Article  MathSciNet  MATH  Google Scholar 

  11. Chernyakova T, Eldar Y (2014) Fourier-domain beamforming: the path to compressed ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 61(8):1252–1267

    Article  Google Scholar 

  12. Chinn G, Olcott PD, Levin CS (2013) Sparse signal recovery methods for multiplexing PET detector readout. IEEE Trans Med Imaging 32(5):932–942

    Article  Google Scholar 

  13. Choi K, Wang J, Zhu L, Suh TS, Boyd S, Xing L (2010) Compressed sensing based cone-beam computed tomography reconstruction with a first-order method. Med Phys 37(9):5113–5125

    Article  Google Scholar 

  14. Combettes PL, Pesquet JC (2008) A proximal decomposition method for solving convex variational inverse problems. Inverse Probl 24(6):065014

    Article  MathSciNet  MATH  Google Scholar 

  15. Do MN, Vetterli M (2002) Contourlets: A directional multiresolution image representation. In: Proc IEEE ICIP, pp 357-360

  16. Dong B, Zhang Y (2013) An efficient algorithm for l 0 minimization in wavelet frame based image restoration. J Sci Comput 54(2-3):350–368

    Article  MathSciNet  MATH  Google Scholar 

  17. Donoho DL (2006) Compressed sensing. IEEE Trans Inform Theory 52 (4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  18. Duan J, Lu W, Tench C, Gottlob I, Proudlock F, Samani NN, Bai L (2016) Denoising optical coherence tomography using second order total generalized variation decomposition. Biomed Signal Process Control 24:120–127

    Article  Google Scholar 

  19. Duan J, Ward WO, Sibbett L, Pan Z, Bai L (2017) Introducing diffusion tensor to high order variational model for image reconstruction. Digit Signal Process 69:323–336

    Article  Google Scholar 

  20. Ehrhardt MJ, Betcke MM (2016) Multicontrast MRI reconstruction with structure-guided total variation. SIAM J Imaging Sci 9(3):1084–1106

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldstein T, Osher S (2009) The split Bregman method for L1-regularized problems. SIAM J Imaging Sci 2(2):323–343

    Article  MathSciNet  MATH  Google Scholar 

  22. Hamza R, Muhammad K, Arunkumar N, González GR (2017) Hash based encryption for keyframes of diagnostic hysteroscopy. IEEE Access [Online]. https://doi.org/10.1109/ACCESS.2017.2762405

  23. Hamza R, Muhammad K, Lv Z, Titouna F (2017) Secure video summarization framework for personalized wireless capsule endoscopy. Pervasive Mob Comput 41:436–450

    Article  Google Scholar 

  24. Hao W, Li L, Qu X, Dong Z (2013) Fast iterative contourlet thresholding for compressed sensing MRI. Electron Lett 49(19):1206–1208

    Article  Google Scholar 

  25. He L, Carin L (2009) Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Trans Signal Process 57(9):3488–3497

    Article  MathSciNet  MATH  Google Scholar 

  26. He L, Chen H, Carin L (2010) Tree-structured compressive sensing with variational Bayesian analysis. IEEE Signal Process Lett 17(3):233–236

    Article  Google Scholar 

  27. Hu Y, Jacob M (2012) Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans Image Process 21(5):2559–2571

    Article  MathSciNet  MATH  Google Scholar 

  28. Hu Y, Ongie G, Ramani S, Jacob M (2014) Generalized higher degree total variation (HDTV) regularization. IEEE Trans Image Process 23(6):2423–2435

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang F, Chen Y, Yin W, Lin W, Ye X, Guo W, Reykowski A (2010) A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: self-feeding sparse SENSE. Magn Reson Med 64(4):1078–1088

    Article  Google Scholar 

  30. Huang J, Yang F (2012) Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation. In: Proc IEEE ISBI, pp 968-971

  31. Huang J, Zhang S, Li H, Metaxas D (2011) Composite splitting algorithms for convex optimization. Comput Vis Image Underst 115(12):1610–1622

    Article  Google Scholar 

  32. Huang J, Zhang S, Metaxas D (2011) Efficient MR image reconstruction for compressed MR imaging. Med Image Anal 15(5):670–679

    Article  Google Scholar 

  33. Jia R Q, Zhao H (2010) A fast algorithm for the total variation model of image denoising. Adv Comput Math 33(2):231–241

    Article  MathSciNet  MATH  Google Scholar 

  34. Jia X, Lou Y, Dong B, Tian Z, Jiang S (2010) 4D computed tomography reconstruction from few-projection data via temporal non-local regularization. In: Proc MICCAI, pp 143-150

  35. Jiang M, Jin J, Liu F, Yu Y, Xia L, Wang Y, Crozier S (2013) Sparsity-constrained SENSE reconstruction: an efficient implementation using a fast composite splitting algorithm. Magn Reson Imaging 32(7):1218–1227

    Article  Google Scholar 

  36. Knoll F, Bredies K, Pock T, Stollberger R (2011) Second order total generalized variation (TGV) for MRI. Magn Reson Med 65(2):480–491

    Article  Google Scholar 

  37. Knoll F, Clason C, Bredies K, Uecker M, Stollberger R (2012) Parallel imaging with nonlinear reconstruction using variational penalties. Magn Reson Med 67(1):34–41

    Article  Google Scholar 

  38. Kong K (2017) Comparison of reconstruction algorithm for compressive sensing magnetic resonance imaging. Multimed Tools Appl [Online]. https://doi.org/10.1007/s11042-017-4985-2

  39. Larsson EG, Erdogmus D, Yan R, Principe JC (2003) SNR-optimality of sum-of-squares reconstruction for phased-array magnetic resonance imaging. J Magn Reson 163(1):121–123

    Article  Google Scholar 

  40. Lefkimmiatis S, Bourquard A, Unser M (2012) Hessian-based norm regularization for image restoration with biomedical applications. IEEE Trans Image Process 21(3):983–995

    Article  MathSciNet  MATH  Google Scholar 

  41. Liang D, Liu B, Wang J, Ying L (2009) Accelerating SENSE using compressed sensing. Magn Reson Med 62(6):1574–1584

    Article  Google Scholar 

  42. Liang D, Wang H, Chang Y, Ying L (2011) Sensitivity encoding reconstruction with nonlocal total variation regularization. Magn Reson Med 65(5):1384–1392

    Article  Google Scholar 

  43. Liu RW, Shi L, Huang W, Xu J, Yu SCH, Wang D (2014) Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters. Magn Reson Imaging 32(6):702–720

    Article  Google Scholar 

  44. Liu RW, Shi L, Yu SCH, Wang D (2015) Box-constrained second-order total generalized variation minimization with a combined L1,2 data-fidelity term for image reconstruction. J Electron Imaging 24(3):033026

    Article  Google Scholar 

  45. Liu RW, Shi L, Yu SCH, Wang D (2015) A two-step optimization approach for nonlocal total variation-based Rician noise reduction in magnetic resonance images. Med Phys 42(9):5167–5187

    Article  Google Scholar 

  46. Lorintiu O, Liebgott H, Alessandrini M, Bernard O, Friboulet D (2015) Compressed sensing reconstruction of 3D ultrasound data using dictionary learning and line-wise subsampling. IEEE Trans Med Imaging 34(12):2467–2477

    Article  Google Scholar 

  47. Lu W, Duan J, Qiu Z, Pan Z, Liu RW, Bai L (2016) Implementation of high-order variational models made easy for image processing. Math Methods Appl Sci 39(14):4208–4233

    Article  MathSciNet  MATH  Google Scholar 

  48. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195

    Article  Google Scholar 

  49. Lustig M, Donoho DL, Santos JM, Pauly JM (2008) Compressed sensing MRI. IEEE Signal Process Mag 25(2):72–82

    Article  Google Scholar 

  50. Lustig M, Pauly JM (2010) SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn Reson Med 64(2):457–471

    Google Scholar 

  51. Lv XG, Song YZ, Wang SX, Le J (2013) Image restoration with a high-order total variation minimization method. Appl Math Model 37(16-17):8210–8224

    Article  MathSciNet  MATH  Google Scholar 

  52. Ma J (2011) Improved iterative curvelet thresholding for compressed sensing and measurement. IEEE Trans Instrum Meas 60(1):126–136

    Article  Google Scholar 

  53. Ma S, Yin W, Zhang Y, Chakraborty A (2008) An efficient algorithm for compressed MR imaging using total variation and wavelets. In: Proc IEEE CVPR, pp 1-8

  54. Majumdar A, Ward RK (2011) An algorithm for sparse MRI reconstruction by Schatten p-norm minimization. Magn Reson Imaging 29(3):408–417

    Article  Google Scholar 

  55. Majumdar A, Ward RK, Aboulnasr T (2012) Non-convex algorithm for sparse and low-rank recovery: application to dynamic MRI reconstruction. Magn Reson Imaging 31(3):448–455

    Article  Google Scholar 

  56. Manjón JV, Coupé P, Buades A, Louis Collins D, Robles M (2012) New methods for MRI denoising based on sparseness and self-similarity. Med Image Anal 16(1):18–27

    Article  Google Scholar 

  57. Ning B, Qu X, Guo D, Hu C, Chen Z (2013) Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization. Magn Reson Imaging 31(9):1611–1622

    Article  Google Scholar 

  58. Nocedal J, Wright SJ (2006) Numerical optimization. Springer, New York

    MATH  Google Scholar 

  59. Papafitsoros K, Schönlieb CB (2014) A combined first and second order variational approach for image reconstruction. J Math Imaging Vis 48(2):308–338

    Article  MathSciNet  MATH  Google Scholar 

  60. Parikh N, Boyd S (2013) Proximal algorithms. Found Trends Optim 1 (3):123–231

    Google Scholar 

  61. Portilla J, Simoncelli EP (2000) A parametric texture model based on joint statistics of complex wavelet coefficients. Int J Comput Vis 40(1):49–70

    Article  MATH  Google Scholar 

  62. Portilla J, Strela V, Wainwright MJ, Simoncelli E P (2003) Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans Image Process 12(11):1338–1351

    Article  MathSciNet  MATH  Google Scholar 

  63. Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z (2012) Undersampled MRI reconstruction with patch-based directional wavelets. Magn Reson Imaging 30(7):964–977

    Article  Google Scholar 

  64. Qu X, Zhang W, Guo D, Cai C, Cai S, Chen Z (2010) Iterative thresholding compressed sensing MRI based on contourlet transform. Inverse Probl Sci En 18(6):737–758

    Article  MathSciNet  MATH  Google Scholar 

  65. Richter D, Basse-Lüsebrink TC, Kampf T et al (2014) Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction. Zeitschrift für Medizinische Physik 24(1):16–26

    Article  Google Scholar 

  66. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D 60(1):259–268

    Article  MathSciNet  MATH  Google Scholar 

  67. Schloegl M, Holler M, Schwarzl A, Bredies K, Stollberger R (2017) Infimal convolution of total generalized variation functionals for dynamic MRI. Magn Reson Med 78(1):142–155

    Article  Google Scholar 

  68. Trzasko J, Manduca A (2009) Highly undersampled magnetic resonance image reconstruction via homotopic l 0-minimization. IEEE Trans Med Imaging 28(1):106–121

    Article  Google Scholar 

  69. Uecker M, Hohage T, Block KT, Frahm J (2008) Image reconstruction by regularized nonlinear inversion-joint estimation of coil sensitivities and image content. Magn Reson Med 60(3):674–682

    Article  Google Scholar 

  70. Ulaby FT (2006) Fundamentals of applied electromagnetics, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  71. van Sloun R, Pandharipande A, Mischi M, Demi L (2015) Compressed sensing for ultrasound computed tomography. IEEE Trans Biomed Eng 62(6):1660–1664

    Article  Google Scholar 

  72. Wang S, Zheng D, Zhao J, Tam W, Speranza F (2014) Adaptive watermarking and tree structure based image quality estimation. IEEE Trans Multimedia 16(2):311–325

    Article  Google Scholar 

  73. Wang Z, Bovik A C, Sheikh H R, Simoncelli E P (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612

    Article  Google Scholar 

  74. Wu J, Li Y (2009) Low-complexity video compression for capsule endoscope based on compressed sensing theory. In: Proc IEEE EMBC, pp 3727-3730

  75. Xie G, Song Y, Shi C et al (2014) Accelerated magnetic resonance imaging using the sparsity of multi-channel coil images. Magn Reson Imaging 32(2):175–183

    Article  Google Scholar 

  76. Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J Imaging Sci 2(2):569–592

    Article  MathSciNet  MATH  Google Scholar 

  77. Yang J, Zhang Y, Yin W (2010) A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J Sel Top Sign Proces 4(2):288–297

    Article  Google Scholar 

  78. Zhang J, Wu C (2011) Fast optimization for multichannel total variation minimization with non-quadratic fidelity. Signal Process 91(8):1933–1940

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No.: 51609195), the Open Project Program of Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education (No.: JYB201704), and the Wuhan University of Technology Excellent Dissertation Cultivation Fund (2017-YS-071). The first author would like to thank Mr. Quandang Ma for his helpful suggestions on manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Wen Liu.

Appendix

Appendix

In this Appendix, we describe how the proximal function (20) associated with TV and TV2 denoising can be efficiently solved using a fast projection method.

1.1 A.1 Fast projection method for tv denoising

The subproblem \(\mathbf {f}_{\text {TV}} = \text {prox}_{\pi } \left (2 \alpha \rho \left \| \mathbf {f} \right \|_{\text {TV}} \right ) \left (\bar {\mathbf {f}} \right )\) is equivalent to solving the following unconstrained optimization problem

$$ \mathbf{f}_{\text{TV}} = \min_{\mathbf{f}} \left\{ \left\| \partial_{h}\mathbf{f} \right\|_{1} + \left\| \partial_{v}\mathbf{f} \right\|_{1} + \frac{\pi}{2} \left\| {\mathbf{f}} - \bar{\mathbf{f}} \right\|_{2}^{2} \right\}, $$
(21)

where \(\pi = \frac {1}{2 \alpha \pi \rho }\). The TV-based optimization problem (21) remains difficult to solve due to its non-smooth and non-differential natures. The split Bregman technique [21] has been widely used to solve this unconstrained optimization problem. To further speed up the algorithm, Jia and Zhao [33] proposed a fast algorithm based on split Bregman method for the solution of (21). This fast algorithm referred to as fast projection method is shown in Algorithm 3.

figure i

The projection method could achieve satisfactory denoising performance with convergence rate \(\mathcal {O} (k^{-1} )\). For the sake of illustration, we use the two-dimensional version of image f with size m × n in this subsection. The first order discrete differential operator hf is given by \(\left (\partial _{h} \mathbf {f} \right )_{i,1} = 0\) for i = 1,⋯ ,m and \(\left (\partial _{h} \mathbf {f} \right )_{i,j} = \mathbf {f}_{i,j} - \mathbf {f}_{i,j-1}\) for i = 1,⋯ ,m and j = 2,⋯ ,n. Analogous to the discrete version of hf, vf is given by \(\left (\partial _{v} \mathbf {f} \right )_{1,j} = 0\) for j = 1,⋯ ,n and \(\left (\partial _{v} \mathbf {f} \right )_{i,j} = \mathbf {f}_{i,j} - \mathbf {f}_{i-1,j}\) for i = 2,⋯ ,m and j = 1,⋯ ,n. For \(\mathbf {w} \in \mathcal {R}^{m \times n}\), the conjugate operators of hw and vw are defined respectively as

$$\left( {\partial_{h}^{T}} \mathbf{w} \right)_{i,j} = \left\{\begin{array}{lll} -\mathbf{w}_{i,2} & \text{if}~ j = 1,\\ \mathbf{w}_{i,j} - \mathbf{w}_{i,j + 1} & \text{if}~1 < j < n, \\ \mathbf{w}_{i,j} & \text{if}~ j = n. \end{array}\right. $$

and

$$\left( {\partial_{v}^{T}} \mathbf{w} \right)_{i,j} = \left\{\begin{array}{llll} -\mathbf{w}_{2,j} & \text{if}~ i = 1,\\ \mathbf{w}_{i,j} - \mathbf{w}_{i + 1,j} & \text{if}~ 1 < i < m, \\ \mathbf{w}_{i,j} & \text{if}~ i = m. \end{array}\right. $$

For τ > 0 and \(\mathbf {c} \in \mathcal {R}^{m \times n}\), the \(\text {Cut} \left (\cdot , \cdot \right )\) operator is defined as

$$ \text{Cut} \left( \mathbf{c}, \frac{1}{\tau} \right) = \mathbf{c} - \frac{\mathbf{c}}{\left| \mathbf{c} \right|} \circ \max \left\{ \left| \mathbf{c} \right| - \frac{1}{\tau}, 0 \right\}. $$
(22)

According to the \(\text {Shrinkage} \left (\cdot , \cdot \right )\) operator defined in (19), it is clear that \(\text {Cut} \left (\mathbf {c}, \frac {1}{\tau } \right ) + \text {Shrinkage} \left (\mathbf {c}, \frac {1}{\tau } \right ) = \mathbf {c}\).

1.2 A.2 Fast projection method for TV2 denoising

The subproblem \(\mathbf {f}_{\text {TV}^{2}} = \text {prox}_{\pi } \left (2 \alpha \left (1 - \rho \right ) \left \| \mathbf {f} \right \|_{\text {TV}^{2}} \right ) \left (\bar {\mathbf {f}} \right )\) is equivalent to solving the following unconstrained optimization problem

$$ \mathbf{f}_{\text{TV}^{2}} = \min_{\mathbf{f}} \left\{ \sum\nolimits_{{\Lambda} \in {\Theta}} \left\| \partial_{{\Lambda}} \mathbf{f} \right\|_{1} + \frac{\pi}{2} \left\| {\mathbf{f}} - \bar{\mathbf{f}} \right\|_{2}^{2} \right\}, $$
(23)

where \({\Theta } = \left \{ hh, hv, vh, vv \right \}\) and \(\pi = \frac {1}{2 \alpha \pi (1 - \rho )} \). Analogous to the fast projection method for TV denoising, the pseudocode of fast projection method for TV2 denoising is shown in Algorithm 4.

figure j

We now define the second order discrete differential operators (hhf, hvf, vhf and vvf) as follows

$$\left( \partial_{hh} \mathbf{f} \right)_{i,j} = \left\{\begin{array}{llll} \mathbf{f}_{i,n} - 2\mathbf{f}_{i,j} + \mathbf{f}_{i,j + 1} & \text{if}~ 1 \leq i \leq m, j = 1,\\ \mathbf{f}_{i,j-1} - 2\mathbf{f}_{i,j} + \mathbf{f}_{i,j + 1} & \text{if}~ 1 \leq i \leq m, 1 < j < n,\\ \mathbf{f}_{i,j-1} - 2\mathbf{f}_{i,j} + \mathbf{f}_{i,1} & \text{if}~ 1 \leq i \leq m, j = n. \end{array}\right. $$
$$\left( \partial_{vv} \mathbf{f} \right)_{i,j} = \left\{\begin{array}{lll} \mathbf{f}_{m,j} - 2\mathbf{f}_{i,j} + \mathbf{f}_{i + 1,j} & \text{if}~ i = 1, 1 \leq j \leq n,\\ \mathbf{f}_{i-1,j} - 2\mathbf{f}_{i,j} + \mathbf{f}_{i + 1,j} & \text{if}~ 1 < i < m, 1 \leq j \leq n,\\ \mathbf{f}_{i-1,j} - 2\mathbf{f}_{i,j} + \mathbf{f}_{1,j} & \text{if}~ i = m, 1 \leq j \leq n. \end{array}\right. $$

and

$$\left( \partial_{hv} \mathbf{f} \right)_{i,j} = \left\{\begin{array}{lll} \mathbf{f}_{i,j} - \mathbf{f}_{i + 1,j} - \mathbf{f}_{i,j + 1} + \mathbf{f}_{i + 1,j + 1} & \text{if}~ 1 \leq i < m, 1 \leq j < n,\\ \mathbf{f}_{i,j} - \mathbf{f}_{1,j} - \mathbf{f}_{i,j + 1} + \mathbf{f}_{1,j + 1} & \text{if}~ i = m, 1 \leq j < n,\\ \mathbf{f}_{i,j} - \mathbf{f}_{i + 1,j} - \mathbf{f}_{i,1} + \mathbf{f}_{i + 1,1} & \text{if}~ 1 \leq i < m, j = n,\\ \mathbf{f}_{i,j} - \mathbf{f}_{1,j} - \mathbf{f}_{i,1} + \mathbf{f}_{1,1} & \text{if}~ i = m, j = n. \end{array}\right. $$

where hvf = vhf. Let \(\partial _{hh}^{T}\), \(\partial _{vv}^{T}\), \(\partial _{hv}^{T}\) and \(\partial _{vh}^{T}\) be conjugate operators of hh, vv, hv and vh, we then have \(\partial _{hh}^{T} = \partial _{hh}\), \(\partial _{vv}^{T} = \partial _{vv}\) and \(\partial _{hv}^{T} = \partial _{vh}^{T}\) with

$$\left( \partial_{hv}^{T} \mathbf{w} \right)_{i,j} = \left\{\begin{array}{llll} \mathbf{w}_{i,j} - \mathbf{w}_{i,n} - \mathbf{w}_{m,j} + \mathbf{w}_{m,n} &\text{if}~ i = 1, j = 1,\\ \mathbf{w}_{i,j} - \mathbf{w}_{i,j-1} - \mathbf{w}_{m,j} + \mathbf{w}_{m,j-1} &\text{if}~ i = 1, 1 <j \leq n,\\ \mathbf{w}_{i,j} - \mathbf{w}_{i-1,j} - \mathbf{w}_{i,n} + \mathbf{w}_{i-1,n} &\text{if}~ 1 < i \leq m, j = 1,\\ \mathbf{w}_{i,j} - \mathbf{w}_{1,j-1} - \mathbf{w}_{i-1,j} + \mathbf{w}_{i-1,j-1} &\text{if}~ 1 < i \leq m, 1 < j \leq n. \end{array}\right. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R.W., Yin, W., Shi, L. et al. Undersampled CS image reconstruction using nonconvex nonsmooth mixed constraints. Multimed Tools Appl 78, 12749–12782 (2019). https://doi.org/10.1007/s11042-018-6028-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6028-z

Keywords

Navigation