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Abstract We introduce a shape descriptor that extracts keypoints from binary images and

Q1

7

automatically detects the salient ones among them. The proposed descriptor operates as

Q2

8

follows: First, the contours of the image are detected and an image transformation is used to 9

generate background information. Next, pixels of the transformed image that have specific 10

characteristics in their local areas are used to extract keypoints. Afterwards, the most salient 11

keypoints are automatically detected by filtering out redundant and sensitive ones. Finally, 12

a feature vector is calculated for each keypoint by using the distribution of contour points 13

in its local area. The proposed descriptor is evaluated using public datasets of silhouette 14

images, handwritten math expressions, hand-drawn diagram sketches, and noisy scanned 15

logos. Experimental results show that the proposed descriptor compares strongly against 16

state of the art methods, and that it is reliable when applied on challenging images such as 17

fluctuated handwriting and noisy scanned images. Furthermore, we integrate our descriptor 18
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in a content-based document image retrieval system using sketch queries as a step for query19

and candidate occurrence matching, and we show that it leads to a significant boost in20

retrieval performances.21

Keywords Shape descriptors · Salient keypoints · Image matching · Sketch-based retrieval22

1 Introduction23

Shape matching is a vibrant area of research on image analysis and retrieval due to24

the numerous applications it allows [7]. Particularly, when dealing with binary images25

where color and texture information are absent (e.g. silhouette images, scanned documents,26

sketches, etc.), shape is the only available feature to be used for image representation and27

matching [26].28

Numerous methods have been presented for shape feature extraction in binary images29

[54, 57]. Usually, images are subjected to contour detection or skeletonization before fea-30

ture extraction in order to remove redundant information and reduce processing time [13].31

Moreover, some methods select certain keypoints and use them to extract features [5, 35, 40].32

In these cases, keypoints are selected based on their saliency or by using uniform sampling33

from the shape contours.34

Due to the absence of background information in binary images, keypoints are extracted35

from the foreground pixels (i.e. regions, contours, or skeletons) and the background is omit-36

ted. In this work, we introduce a shape descriptor that approaches the problem differently37

by generating background information in binary images, and then involves it in feature38

extraction. The main steps of the descriptor are the following:39

– Keypoint extraction: An image transformation is used to generate background informa-40

tion on the original binary image. Then, keypoints are extracted from the transformed41

image using pixels’ local area analysis.42

– Keypoint selection: An objective measure of keypoint salience is used to automatically43

select the most important keypoints and filter out the redundant and sensitive ones.44

– Feature representation: A feature vector is calculated for each keypoint by using the45

distributions of contour points in the local area of the keypoint.46

Our method, the binary salient keypoints (BSK) descriptor, is evaluated using silhouette47

images of the Kimia 216 dataset [45] and the MPEG-7 CE-shape-1 part B dataset [6], hand-48

written mathematical expressions of Zanibbi and Yu’s dataset [56], hand-drawn diagram49

sketches of Liang et al.’s dataset [28], and noisy scanned logo images of the Tobacco 80050

dataset [60]. Experimental results on various types of images and a comparative evaluation51

demonstrate that BSK is competitive compared with state of the art methods. Our code for52

BSK is provided online. 153

The remainder of this paper is organized as follows: Section 2 reviews key methods54

of shape matching. We present our descriptor in Section 3 and evaluate it in Section 4.55

Concluding remarks and future work are presented in Section 5.56

1https://github.com/hchatbri/bsk

https://github.com/hchatbri/bsk
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2 Related work 57

Research on shape matching has led to a large repository of shape descriptors that can 58

be classified into methods using global and local features [57], graph-based methods [28], 59

contour-based methods and skeleton based methods [13], in addition to methods using 60

salient keypoints [5, 32, 35, 40]. 61

Global methods extract features using the coarse information of the shape, and hence 62

do not convey much information about the local details. Such methods include shape sig- 63

natures [43], Fourier descriptors [58], and angular partitioning [10]. Global methods are 64

robust against noise but on the detriment of representing fine details. On the other hand, 65

other methods take into consideration the local region of the shape points, which makes 66

them capable of capturing fine details of the shape. Such methods include curvature scale 67

space (CSS) [32], shape contexts [5], and variations of local binary patterns [11, 18]. 68

Graph-based methods represent features using graph structures in contrast to statisti- 69

cal methods which use statistical natures of appearances [28]. Advantages of graph-based 70

methods are their ability to represent spatial and hierarchical relationships between the 71

object parts [8], in addition to allowing partial matching. On the other hand, graph matching 72

requires intensive computations and thus it is common to transform a graph into a numeri- 73

cal feature vector in order to speed up computations, which is done at the expense of some 74

information loss [16, 27] 75

Contours and skeletons have been used as an intermediate representation before feature 76

extraction. Contours are more robust against noise than skeletons, as skeletons tend to gen- 77

erate noisy branches and artifacts in presence of shape border perturbations [13]. On the 78

other hand, skeletons are more suitable in applications that require the segmentation of the 79

original object into its constituent parts for subsequent graph-based feature representation 80

[3, 24, 44, 51]. 81

Some descriptors extract a number of keypoints and generate a feature vector for each 82

one of them. Keypoints can be extracted using uniform sampling from the shape contours 83

without special consideration about the keypoints curvature or location, offering a way to 84

extract keypoints without a bias [29]. This has been exploited in numerous descriptors [5, 85

17, 40, 49], yet it does not take into account keypoints’ local characteristics that make 86

some keypoints more important than others. In addition to binary images, uniform sampled 87

keypoints have been used on grayscale images (e.g. magnetic resonance image (MRI) regis- 88

tration [36]) and they have been used on color images combined with other descriptors (e.g. 89

combined with SIFT and segmentation patches in [21] for logo retrieval). 90

On the other hand, keypoints that are extracted based on their salience (e.g. corners, 91

crossing points) are biologically plausible [39], although they can lead to false detection in 92

regions of contour perturbations or texture [46]. High curvature points of the contour have 93

been used for keypoint extraction [20, 35]. Early methods such as Curvature scale space 94

(CSS) uses scale space filtering [53] to extract contour inflection points [1, 32]. Then, the 95

contour deformation and merging of inflection points caused by scale space filtering are 96

used for feature extraction. The CSS method is a global statistical method, designed to deal 97

only with closed concave contours; Convex and complex shapes are poorly represented with 98

the technique. In [23], Kopf et al. describe an attempt to extend the CSS technique and make 99

it able to represent convex shapes. Their idea is to create a mapping of the original shape to 100

a second shape, called mapped shape, where strong convex segments of the original shape 101

become concave segments of the mapped shape, and significant curvatures in the original 102

shape remain significant in the mapped shape. The mapping is done by enclosing the sketch 103
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with a circle of radius R and locate the point P of the circle closest to each sketch pixel. The104

sketch pixels are then mirrored on the tangent of the circle in P . The center of the circle is105

the average position of sketch pixels.106

Scale-space filtering has also been used to extract distinctive keypoints in intensity107

images in the well-known SIFT descriptor [30]. However, it has been shown that SIFT key-108

points are suboptimal compared to keypoints that are uniformly sampled from the shape109

contours when using complex binary images such as historical hieroglyphs [41]. This result110

is due to the absence of local changes of intensity in binary images that hinders scale-space111

filtering from detecting distinctive keypoints and attributing them characteristic scales.112

Scale-space has also been used for keypoint filtering [12], which proved to be effective but113

on the expense of efficiency.114

Curvature information has been also used for salient keypoints extraction in [35]. Here,115

the salient points of a shape are defined as the higher curvature points along the shape116

contour that are extracted using a noise-robust approach [34]. Then, each salient point is117

represented with two values, the relative angular position of the salient point from the per-118

spective of the shape centroid, and the salience relevance which characterizes the concavity119

of the contour segmented around the salient point after applying a Gaussian filter to reduce120

contour noise. Image matching corresponds an energy minimization function which give121

the distance between the best pair of corresponding salient points.122

In addition to high curvature points, other salient points have been used including end123

points and branch points of the object’s skeleton, and the vertices of the minimum enclosing124

rectangle of the object [59]. For each salient point, features are calculated using a circular125

layout of polar coordinates to calculate the distribution of some shape points which are126

sampled using a maximum distance method. Finally, a feature vector is constructed using a127

bag of words method.128

Data-driven methods have been recently designed using deep learning [37, 50, 61].129

Unlike the aforementioned methods, data-driven methods automatically learn salient fea-130

tures using convolutional layers, in an attempt to mimic the way humans perceive shapes131

and sketches [19]. Despite the success of such methods, they require large labeled datasets132

for training and they usually need graphical processing units (GPUs) to alleviate compu-133

tations. Due to these reasons, engineered features remain necessary for applications where134

large labeled datasets are unavailable.135

2.1 Our contributions136

Compared to the state of the art, our descriptor’s main contributions are twofold:

Q3

137

– We demonstrate that the background of binary images, which before has not been con-138

sidered enough for feature extraction, can be used to extract distinctive features. We139

show that an image transform such as the distance transform (DT) can be used to140

enable this. Our experiments show that extracting salient keypoints using this procedure141

leads to improved robustness against noise that otherwise would easily corrupt object142

contours.143

– Our descriptor is modular and it proceeds in three main steps which are feature extrac-144

tion, keypoint selection and feature representation. This is similar to frameworks of145

widely-used color image descriptors (e.g. SIFT [30], SURF [4]). Consequently, we146

adapt a framework that has been used for color images into the binary image domain.147
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3 The proposed descriptor 148

The binary salient keypoints descriptor (BSK) operates as follows: First, keypoints are 149

extracted (Section 3.1). Then, a number of keypoints are selected among the extracted ones 150

and the others are filtered out (Section 3.2). Finally, a feature vector is calculated for each 151

keypoint (Section 3.3). 152

3.1 Keypoint extraction 153

In this step, a transformation is applied on the input binary image in order to generate 154

background information. Then, points having specific characteristics in their local areas are 155

used to extract keypoints. 156

For our image transformation, we use the distance transform (DT) [42]. DT generates a 157

grayscale image where the intensity of each pixel corresponds to its distance from the near- 158

est foreground pixel (Fig. 1c). Here, the distance between pixels is equal to their Manhattan 159

distance as commonly used in DT implementations [31]. 160

Fig. 1 Keypoint extraction steps: a Original binary image. b WF ×HF image after normalization (a = 0.25).
c DT image. d Regions of equal maximal intensity highlighted in different colors e Keypoints (k = 11). f
Keypoint vectors (α = 1): Circle radii correspond to the keypoint distance from the nearest contour point,
and arrows show the orientation of the vector delimited by the keypoint and its nearest contour point
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Keypoints are extracted as follows: First, the original image (Fig. 1a) is normalized by161

applying contour detection and image translation (Fig. 1b). Then, background information is162

generated using DT (Fig. 1c). Before applying DT, a 1-pixel-width border frame is added to163

the normalized image in order to delimit the object so DT does not systematically generate164

maxima at the borders. Next, regions of equal maximal intensity are detected on the DT165

image using a k × k square window (Fig. 1d). A region of equal maximum intensity is the166

contiguous pixel ”islands” that have higher intensities than their neighboring pixels. They167

correspond to the regions of highest intensity in Fig. 1c that are shown in different colors168

in Fig. 1d. Finally, the detected regions are represented using their centers of masses which169

are taken as keypoints (Fig. 1e).170

Contour detection is used to produce a compact representation of the original image171

that reduces the number of foreground pixels but preserves the visual information [13, 55].172

Afterwards, keypoints can be extracted from regions inside and outside the object (Fig. 1e).173

The dimensions (WF ,HF ) of the frame used before applying DT are calculated as174

follows:175

WF = (1 + a) WBB, HF = (1 + a) HBB (1)

where WBB and HBB are the dimensions of the object’s bounding box, and a ≥ 0 is intro-176

duced to allow for a space between the object contours and the frame pixels in order to177

extract keypoints in these regions. The object is translated towards the center of the frame.178

In the present work, we set a empirically (Section 4.2), so that the bounding box is located179

in a good proximity from the foreground object (Fig. 1). A too small a would make the180

frame borders too close to the foreground object, which places the keypoints too close to181

the contour making them more vulnerable to contour noise, while a too large a would make182

the frame borders too far from the object contour, which increases the size of the feature183

extraction windows (Fig. 5) and hence puts more weight on global details of the object on184

the detriment of local details.185

Regions of equal maximal intensity are detected using a k × k square window located at186

each DT image pixel. The parameter k affects the number of extracted local maxima. The187

larger k gets, the fewer keypoints are detected (Fig. 2). Therefore, parameter k controls the188

number of generated keypoints. In this paper, we set k empirically (Section 4.2.1), and we189

leave further investigation on setting k automatically for future work.190

Due to using DT to generate background information, the extracted keypoints are in191

locus of symmetry between foreground pixels and thus characterize the object using its192

local symmetries. We anticipate the significance of such keypoints in shape representation193

Fig. 2 Effect of the parameter k on the number of keypoints
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due to the importance of symmetry as a characteristic of patterns that is exploited in human 194

perception [52] and in computational image matching [25]. 195

The complexity of the keypoint extraction step can be estimated as follows: The dis- 196

tance transform and regions of equal maximal intensity detection require two processes that 197

browse the entire image pixels, hence they make a 2.O(n) complexity, with n here repre- 198

senting the number of image pixels. Then, keypoint detection in regions of equal maximal 199

intensity make a complexity of O(n). 200

3.2 Keypoint selection 201

The initial number of keypoints can be reduced by filtering out the redundant and sensitive 202

keypoints. Redundant keypoints duplicate representing the same details of the image, and 203

keypoints that are located very close to contours are sensitive to insignificant changes in 204

image local details. 205

A measure of keypoint salience is introduced for keypoint ranking and selection. A 206

salient keypoint is defined according to two aspects: 207

– It has few keypoints in its local area, and thus it is non-redundant. 208

– It is not located very close to foreground points, and thus it is robust against 209

insignificant changes in image local details. 210

Formally, the salience γ (i) of a keypoint Ki is calculated as follows: 211

γ (i) = di

1 + ni

(2)

where di is the distance from keypoint Ki to its closest contour or frame border point, and 212

ni is the number of close keypoints. A keypoint Kj is considered close to Ki if it is located 213

within a distance to Ki proportional to di . 214

Our hypothesis for automatically selecting the most salient keypoints is as follows: We 215

observe that the range of salience values commonly indicates three types of keypoints 216

(Fig. 3c). The first type corresponds to few keypoints with extreme salience values, the sec- 217

ond type corresponds to a larger number of keypoints with increasing redundancy, and the 218

third type corresponds to keypoints with high redundancy and closeness to the contours or 219

frame borders. Since keypoints of the third type are redundant and sensitive, they are filtered 220

out. 221

In order to filter out keypoints of the third type, we calculate the cumulative keypoint 222

salience Γ (i) for a number i of keypoints ranked in their descending salience measures, as 223

follows: 224

Γ (i) = ln

⎛
⎝

i∑
j=1

γ (j)

⎞
⎠ (3)

Figure 3a shows a typical curve of Γ as a function of the number of accumulated keypoints. 225

The curve of Γ can be roughly segmented into three parts corresponding to the types of 226

keypoints. In order to find keypoints of each type, a two-dimensional search is used to detect 227

the three segments that minimize the area between them and the curve of Γ . Then, keypoints 228

corresponding to the first and second types are selected. In the literature, a similar strategy 229

has been reported in [47] to automatically detect salient corner points in online sketches 230

using scale-space filtering and digital ink attributes (e.g. pen speed, curvature). 231

Figure 4 illustrates the benefit of automatic selection of keypoints using their salience 232

scores. The top example shows matching between an image and its slightly different version 233
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Fig. 3 Keypoint selection: a Curve approximation by three segments applied on image b, c keypoints of the
first type in green, keypoints of second type in blue, and keypoints of third type in red. Automatic keypoint
selection reduces the number of keypoints from 298 to 78

Fig. 4 Automatic keypoint selection reduces the number of keypoints while improving matching perfor-
mances (similarity is calculated according to (7))
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Fig. 5 Keypoint feature extraction using size-adaptive layouts

that is generated using a Gaussian filtering (σ = 3) followed by binarization [33], leading 234

to remove the granularity of some local details. Using automatic keypoint selection does not 235

affect the similarity between the two images, which shows that the filtered keypoints are not 236

crucial for matching. On the other hand, the bottom example shows matching between two 237

images belonging to different classes. Here, using automatic keypoint selection decreases 238

the similarity, which shows that automatic keypoint selection has removed a significant 239

number of keypoints causing false positives. In both cases, the reduction in the number of 240

keypoints is considerable. 241

The complexity of the keypoint selection step can be estimated as 2.O(n2), with n here 242

representing the number of initially extracted keypoints. 243

3.3 Feature representation and matching 244

The last step is to calculate a feature vector to each keypoint Ki . For this purpose, we use 245

a scale-invariant circular layout which radius ri is proportional to the distance between the 246

keypoint Ki and its closest contour point (Fig. 5): 247

ri = α × di (4)

where α is a heuristic. The idea is to set α > 1 to allow taking into account the closest 248

contour points in the smallest distance bins. Then, a histogram hi is extracted by calculating 249

the distribution of contour points in distance and angle bins, i.e. hi(j) holds the number 250

of contour points that are located inside the feature window bin of index j (Fig. 5b). The 251

distance between two histograms is expressed by the X 2 statistic: 252

X 2(h1, h2) = 1

2

NB−1∑
j=0

[h1(j) − h2(j)]2

h1(j) + h2(j)
(5)

where NB is the number of bins in a keypoint histogram. Using the distance di to set the 253

radius of the feature layout makes the descriptor scale-invariant. 254
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The dissimilarity d between two images I1 and I2 is estimated by the cumulative255

minimum distance between the images’ keypoint histograms:256

d(I1, I2) = 1

N1

N1−1∑
i=0

min
0≤j<N2

{
X 2

(
h1

i , h
2
j

)}
(6)

where N1 and N2 are the number of keypoints in images I1 and I2. Because d(I1, I2) is257

asymmetric, we express the distance between two images I1 and I2 as follows:258

D(I1, I2) = d(I1, I2) + d(I2, I1)

2
(D ∈ [0, 1]) (7)

The smaller D(I1, I2) is, the more similar I1 and I2 are.259

The feature vector is translation-invariant due to using the object’s bounding box for260

image normalization. Scale-invariance is partly ensured in the keypoint filtering step (using261

a radius di of the circular region used in the salience measure (Eq. 2) that changes with262

the size of the image) and the feature representation step (since the radius of the feature263

extraction circular window depends on each keypoint and also on the object’s size), but264

partly hindered by fixing parameter k making it scale-dependent. Rotation-invariance can265

be ensured by using the orientation of the vector delimited by the keypoint and its nearest266

contour point as a reference orientation (Fig. 1), or by using shifted matching of the key-267

points’ feature vectors. In case mirrored matching is necessary, it can be implemented by268

mirroring one of the feature vectors and repeating the matching then taking the average.269

The complexity of feature representation can be estimated as O(m).O(n), with m here270

representing the number of initially extracted keypoints, and n the number of contour points.271

Feature matching requires NB.O(m).O(n) with m and n are the number of keypoints in272

images I1 and I2 respectively.273

4 Experiments274

4.1 Datasets275

Evaluation is done using five datasets (Fig. 6): The Kimia 216 dataset [45] and the MPEG-276

7 dataset [6] include silhouette images that are neat and which contain single component277

objects. Zanibbi and Yu’s dataset [56] contains handwritten mathematical expressions which278

exhibit handwriting fluctuations and component displacement, which also appear in Liang279

et al.’s dataset [28] of hand-drawn diagram sketches. The Tobacco 800 dataset [60] contains280

logo images that are taken from scanned documents and they are the noisiest compared to281

the other datasets. The datasets can be thought of as clusters’ centers extracted from large282

datasets that are typically used in data-driven approaches [19]. On the other hand, they are283

fit to evaluate shape descriptors as they represent varied image classes and exhibit different284

challenges (e.g. noise, handwriting fluctuations).285

We used Kimia, Zanibbi and Yu, and Tobacco datasets as training datasets to empirically286

set our parameters. The choice is made due to the reasonable sizes of these datasets, and287

their characteristics relative to the remaining two datasets:288

– Kimia 216 dataset can be considered a smaller subset of MPEG-7. It contains similar289

classes and less image variations.290
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Fig. 6 Samples of the dataset images

– Zanibbi and Yu’s dataset is handwritten, which is the same main feature of Liang et al.’s 291

dataset. 292

– Tobacco dataset is used for its significant noise. 293

4.2 Descriptor evaluation 294

Before evaluating the descriptor, we set its parameters as follows: The parameter for setting 295

the normalization frame’s dimensions is set a = 0.25, which insures a scale-invariant frame 296

with space between its borders and the object contours. A keypoint Kj is considered close 297

to a keypoint Ki if the distance between them is equal or less than di

4 , where di is the 298

distance between keypoint Ki and its closest contour or frame border point. The radial 299

and angular numbers of bins in the keypoint descriptor are set as 4 distance bins and 8 300

angle bins in order to make a trade-off between distinctiveness and robustness. A small 301
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number of bins compromises the descriptor’s distinctiveness, while a larger number of bins302

causes sensitivity to noise and fluctuations [41]. The constant for configuring the keypoint-303

dependent feature layout radius is set α = 1.5 in order to insure taking into account the304

closest contour points in the smallest distance bins.305

Evaluation is done using the precision at n metric [2], denoted P @n, which is calculated306

as follows:307

P @n = |{n retrieved images} ∩ {relevant images}|
|{n retrievd images}| (8)

Due to variations in the number of class instances, we set the number of retrieved images n308

as query-dependent and equivalent to the number of the query’s class instances. This makes309

P @n equal to precision and recall. The larger P @n is, the better precision and recall the310

descriptor shows. In the following, we specify the parameter n in P @n when it is fixed (e.g.311

results are shown for a single dataset with a fixed number of class instances).312

4.2.1 Keypoint sampling evaluation313

During keypoint extraction, the parameter k defines the size of the local maxima detection314

window and thus affects the number of extracted keypoints (Fig. 2). We evaluate the effect315

of this parameter on matching performances using the Kimia 216, Zanibbi and Yu, and316

Tobacco datasets as training datasets for this empirical setting.317

Figure 7 shows curves of P @n as a function of k. We observe that the matching per-318

formance eventually decreases when k increases, and that the best matching performances319

correspond to k = 3, which means that the best way is to keep a maximum number of key-320

points that will be later filtered during the keypoint selection step. According to the results321

of this experiment, we set k = 3 empirically and use it in subsequent experiments.322

4.2.2 Keypoint distinctiveness evaluation323

The distinctiveness of BSK’s keypoints is assessed by comparison with equidistant sampling324

which is used in numerous descriptors, namely shape contexts [5]. We perform experiments325

Fig. 7 Effect of varying the parameter k on P @n
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of image retrieval using the Kimia 216 dataset where each image is used as a query and 326

the average P @12 is calculated for all queries. We extract the same number of keypoints 327

using BSK and shape contexts and perform matching using our keypoint matching steps 328

(Section 3.3). In order to make the comparison between BSK keypoints and shape contexts 329

fair, we introduced two modifications on the shape contexts: Features are extracted from 330

equidistant keypoints from the contour and all the remaining contour points are consid- 331

ered when calculating the keypoint’s histogram, unlike the original shape context descriptor 332

where only the sampled keypoints are considered. In addition, scale-invariance is introduced 333

by making the circular feature extraction layout’s size adaptive to the shape by calculating 334

the distance between each keypoint and its farther contour point, instead of using static log- 335

polar layouts. Consequently, these modifications led to better results when compared with 336

the original shape contexts considering only equidistant keypoints and using static log-polar 337

layouts for feature extraction. 338

Figure 8 shows performances of BSK keypoints and shape contexts. For small num- 339

bers of extracted keypoints, using equidistant keypoints outperforms BSK keypoints. Then, 340

starting from 40 keypoints, BSK outperforms shape contexts and the gap increases in cor- 341

relation with the number of keypoints. In fact, using 40 BSK keypoints outperforms using 342

100 shape contexts. This result shows that our keypoints are distinctive and outperform the 343

widely-used equidistant keypoint sampling scheme. 344

4.2.3 Keypoint selection evaluation 345

The keypoint selection step aims to reduce the number of keypoints by removing the redun- 346

dant ones and the ones too close to the shape contour. Figure 9 shows retrieval performances 347

expressed in P @n as a function of the percentage of keypoints using the Kimia 216 dataset, 348

Zanibbi and Yu’s dataset, and Tobacco logos dataset. For the Kimia 216 dataset, perfor- 349

mances increase when the percentage of keypoints increases. As for Zanibbi and Yu’s and 350

Fig. 8 P @12 as a function of the number of keypoints N for BSK and shape contexts on the Kimia 216
dataset
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Fig. 9 P @n as a function of the percentage of used keypoints relative to the total number of extracted
keypoints using BSK

Tobacco logos datasets, optimal performances are obtained when not all of the keypoints351

are used (when 20% and 60% of keypoints are selected respectively).352

Table 1 shows retrieval performances of BSK when all keypoints are used and when353

keypoint selection is performed. For all datasets, the reduction in number of keypoints is354

significant and roughly makes the third of total keypoints. In case of Zanibbi and Yu’s and355

Tobacco logos datasets, matching performances improve. However, they decrease in case356

of Kimia 216 dataset. This result suggests that our keypoint salience-based selection is357

effective when the initial number of keypoints is relatively large (cases of Zanibbi and Yu’s358

and Tobacco logos datasets). When the initial number of keypoints is relatively small (case359

of Kimia 216 dataset), the keypoint selection step would better be skipped. This can be done360

using a threshold on the initial number of keypoints.361

4.3 Performance comparison with other descriptors362

Tables 2, 3 and 4 show results of comparing our descriptor with other state of the art meth-363

ods. Results are shown according to metrics that are used in available published work; In364

case of Kimia’s dataset, we calculate the retrieval performance metric reported in several365

published papers, that is the number of relevant retrieved images for each of the top 6 ranks366

Table 1 P @n and number of
keypoints N using BSK with all
keypoints and with selected
keypoints

Implementation All keypoints Selected keypoints

P @n N P @n N

Kimia 216 88.27 % 147 85.49 % 58

Zanibbi and Yu 78.0 % 1610 81.65 % 564

Tobacco logos 77.21 % 1203 82.74 % 379
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Table 2 Performances Q4using the
Kimia 216 dataset [45] Method BSK SRD [11] SC [5] PSSG [3]

P @6 93.83 % 86.96 % 92.12 % 99.22 %

and the percentage calculated by summing these numbers. We refer to it as P @6. In case of 367

the MPEG-7 dataset, the P @20 metric is used. In case of Liang et al.’s dataset, comparison 368

is done using the mean average precision (MAP) metric [2]. 369

BSK yielded competitive performances in all the datasets we used. Results in Tables 2–4 370

show that BSK is effective in case of computer generated silhouette images of the Kimia 371

216 dataset and the MPEG-7 dataset, and hand-drawn sketch images of Liang et al.’s dataset 372

that exhibit high sketching perturbations and drawing style variations. In addition, BSK 373

reached P @10 = 82.74% and P @n = 81.65% on Zanibbi and Yu’s dataset [56] and the 374

Tobacco logos dataset [60] respectively, which compares well against the support region 375

descriptor (SRD) [11] that gave P @10 = 47.6% and P @n = 82.55%. This demonstrates 376

the effectiveness of BSK in case of handwritten images of Zanibbi and Yu’s dataset and 377

in case of the noisy scanned images of the Tobacco logos dataset. It is worth mentioning 378

that SRD is designed to be robust against noise by combining local and global features. 379

Results on the MPEG-7 dataset are relatively lower due to two image variations: First, 380

the dataset has significant scale variance that challenges our descriptor, which has some 381

scale-invariance limitations due to fixing the parameter k during the keypoint extraction 382

step. Second, the dataset has also a significant number of mirrored images, and we do not 383

currently take this into account during the feature vector matching (5). 384

Although BSK does not show supremacy over all other descriptors, results showed that 385

it compares strongly against various types of methods. BSK outperformed shape context 386

that uses equidistant sampling (Table 2) and other salience-based keypoint descriptors such 387

as the contour salience descriptor (CS) [15] (Table 3), the minimal spanning tree (MST), 388

Laplacian spectrum with geometry (LS+G) [16] and the LS+G [16] descriptors (Table 4). 389

BSK also compares well against methods that combines local and global features such as 390

SRD (Table 2), and graph-based methods such as MST, LS+G, and TPG [28] (Table 4). 391

On the other hand, BSK was outperformed by PSSG [3] on the Kimia dataset [45] and 392

TSDIZ [20] and SSD+GF [35] on the MPEG-7 dataset [6]. In case of PSSG [3], the use of 393

skeleton pruning makes PSSG robust against contour noise, which explains the improved 394

performances on the Kimia dataset. PSSG [3] skeletons, on the other hand, are vulnerable 395

to shape ambiguity [38], but this problem is minor in the Kimia dataset and does not affect 396

PSSG. As for TSDIZ [20] and SSD+GF [35], we explain the results by their invariance to 397

scale, since SSD+GF [35] is based on the multiscale tensor scale transform, and SSD+GF 398

[35] uses a scale-invariant salience detection that analyzes the curvature of contour points. 399

We further evaluate BSK’s robustness against contour noise by comparing it with other 400

keypoint-based descriptors. For this purpose, we generated noisy versions of the Kimia 401

dataset images [45]. First, we removed the small contour perturbations using a Gaussian 402

filter (σ = 1) followed by binarization [33]. Then, we produced 10 sets of images with 403

Table 3 Performances using the
MPEG-7 dataset [6] Method BSK CS [15] TSDIZ [20] SSD+GF [35]

P @10 75.48 % 36 % 81 % 85 %



JrnlID 11042 ArtID 6054 Proof#1 - 27/04/2018

UNCORRECTED
PROOF

Multimed Tools Appl

Table 4 Performances using
Liang et al.’s dataset [28] Method BSK MST [27] LS+G [16] TPG [28]

MAP 83.83 % 29.8 % 50.9 % 61.6 %

contour noise levels from 10% to 100%. The noise is generated by a random removal of404

a percentage of contour pixels. Using the noisy sets of images, BSK is compared against405

shape contexts [5] (as used in Section 4.2.2) and a similar descriptor that uses the Harris406

detector [22], as a widely-used corner detector. For the three descriptors, the same number407

of keypoints are selected, which is equal to the number of salient keypoints selected auto-408

matically by BSK. For shape contexts, a similar number of keypoints are selected by using409

uniform sampling. As for the Harris-based descriptor, the keypoints are selected according410

to their descending Harris detector response.411

Figure 10 shows examples of keypoints extracted using the three descriptors for a neat412

image with smooth contours and its noisy version after generating 50% contour noise. We413

observe that BSK and uniform sampling, used in shape contexts, produce keypoints that are414

sparse and cover all image details, while keypoints produced by the Harris detector tend to415

be localized on few corners. In order to estimate the effect of noise on keypoint location416

shifting, we calculate the keypoint average shift as follows:417

averageshift = 1

N2

N2∑
j=1

min
i

|−−−→
KiKj | (9)

Fig. 10 Keypoints extraction methods. Top: results for a neat image (60 keypoints are extracted automati-
cally). Bottom: results for an image with 50% contour noise (62 keypoints are extracted automatically). Right
to left: BSK, equidistant sampling, and Harris detector
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where N1 and N2 are the numbers of keypoints in the neat image and its noisy version 418

respectively, and
−−−→
KiKj is equal to the Euclidean distance between a keypoint Ki of the neat 419

image and a keypoint Kj in the noisy image. By taking the minimum value of |−−−→
KiKj |, we 420

find keypoint Ki that corresponds to the previous location of keypoint Kj before a shift 421

caused by noise occurs. 422

For the examples in Fig. 10, the rounded values of average shift for BSK, uniform sam- 423

pling and Harris detector are 3 pixels, 2 pixels, and 15 pixels respectively (fixing the number 424

of salient keypoints does not change the behavior of average shift). This shows that BSK 425

and uniform sampling are more robust than Harris detector, since their keypoints do not shift 426

much when exposed to contour noise. Accordingly, BSK and uniform sampling outperform 427

the Harris detector in terms of retrieval performances, as shown in Fig. 11. BSK also outper- 428

forms uniform sampling although BSK’s average shift value is slightly larger than uniform 429

sampling’s average shift value. This result provides an evidence that extracting keypoints 430

from the background, instead of the contours, is a good strategy to reduce the effect of noise. 431

4.4 Evaluation in content-based document image retrieval 432

We integrate BSK in a document image retrieval system reported by Chatbri et al. [14]. This 433

system takes input in the form of sketched mathematical expressions, and outputs a ranked 434

list of document images that contain the user’ query. This is done by using a finding the 435

connected components of the document image that are similar to the connected components 436

of the query using contour points distribution histograms, and then locate the ones that 437

have a spatial arrangement similar to the query. BSK is integrated as a last step that further 438

compares the query with the detected occurrences in the database images. 439

Table 5 shows a performance comparison including Chatbri et al.’s original system 440

against when BSK is integrated, in addition to another content-based retrieval system by 441

Zanibbi and Yu [56]. Performances are expressed with two metrics: P − Recall expresses 442

the system’s ability to find the correct document image (i.e. document page), and A−Recall 443

Fig. 11 P @12 as a function of noise level for BSK, shape contexts [5] and the Harris detector [22] using
noisy versions of the Kimia dataset images [45]
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Table 5 Average values of P -Recall and A-Recall calculated for n = 1, 5, 10

Method n Printed queries Handwritten queries

P-Recall A-Recall P-Recall A-Recall

Chatbri et al. [14] 1 100% 94.28% 40.0% 27.83%

5 100% 96.78% 63.5% 51.15%

10 100% 96.78% 73.5% 57.92%

Chatbri et al. [14] + BSK 1 92.5% 89.29% 54.0% 47.84%

5 100% 96.29% 70.0% 59.89%

10 100% 96.78% 75.0% 62.43%

Zanibbi and Yu [56] 1 . 90% 38.6% 26.7%

5 . 90% 54.9% 39.8%

10 . 90% 63.2% 43.3%

expresses the system’s ability to find the correct area of the query’s occurrence inside444

the document image [14, 56]. The metrics are calculated for the top-n retrieved document445

images ranked by occurrence similarity with the query.446

According to the results, BSK improves retrieval performances especially when hand-447

written queries are used. Improvement reaches 20% of A − Recall when the top-1 images448

are retrieved. On the other hand, performances drop in case of printed queries.449

4.5 Discussion450

The proposed descriptor is able to extract distinctive keypoints as demonstrated by compar-451

ison with similar numbers of shape context keypoints extracted using equidistant contour452

points sampling on the Kimia 216 dataset. In fact, BSK is able to outperform shape contexts453

using significantly fewer keypoints. This is further proven when BSK outperforms methods454

that detect salient points in the image contour using the other datasets. An interesting direc-455

tion motivated by these results is to combine BSK keypoints with salient keypoints of the456

contour for the sake of better distinctiveness.457

Experiments on challenging images, such as fluctuated handwritten mathematical458

expressions of Zanibbi and Yu’s dataset and hand-drawn diagram sketches of Liang et al.’s459

dataset, demonstrate the reliability of BSK, as it outperforms largely other methods. Meth-460

ods used for comparison include graph-based descriptors which are known for their high461

matching performances and ability to perform partial matching. The reliability of BSK is462

further demonstrated when assessed on the noisy scanned images of the Tobacco logos463

dataset.464

The keypoint selection based on keypoint salience is effective in reducing the number465

of keypoints without significantly compromising the descriptor’s distinctiveness. However,466

the performances improve when the initial number of keypoints is relatively large. For this467

purpose, a threshold on the initial number of keypoints can be used to activate or skip the468

salience-based keypoint selection.469

BSK is adequate to be used for applications of image retrieval from document image470

databases. This is shown by the performance improvement it leads to when integrated in a471

standard document image retrieval system.472

Finally, BSK is currently not suitable for real-time applications. In order to become so,473

the following can be done:474
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– Use parallel computing: Currently, all the procedures are executed sequentially due to 475

limited memory. Otherwise, several steps of the algorithm can be made faster, including 476

a parallel implementation of the distance transform [9], faster connected components 477

extraction, and feature extraction for each keypoint in parallel. 478

– Resize the images to a reasonably smaller scale, which will speed up the steps 479

aforementioned, and use integral images [48] to speed up local processes. 480

5 Conclusions and future work 481

In this paper, we introduced a descriptor for binary image matching using image salient 482

keypoints. The proposed binary salient keypoints descriptor (BSK) generates background 483

information in binary images, then extracts keypoints using pixels that have specific char- 484

acteristics in their local areas. A measure of keypoint salience is used for automatically 485

selecting the most salient keypoints and filtering out the redundant and sensitive ones. 486

The proposed descriptor has been evaluated using five public datasets of silhouette 487

images, handwritten mathematical expressions, hand-drawn diagram sketches, and scanned 488

logo images. Experimental results and comparison with state of the art methods demon- 489

strated that BSK has competitive matching performances when applied on various types of 490

images, including challenging images of fluctuated handwriting and noisy scanned images. 491

Furthermore, BSK’s integration in a content-based document image retrieval system leads 492

to improving the system’s performances considerably. 493

BSK paves the way for future research on salient keypoints detection in the background 494

of binary images, as an unconventional new way of binary image analysis. In addition, it can 495

be improved by tuning its keypoint extraction, filtering, and feature representation modular 496

stages. We identify areas of future work as follows: 497

– Scale-invariance can be improved by setting parameter k automatically. For instance, 498

instead of fixing the value of k according to empirical results on a number of datasets, 499

k can be set according to each image taking into account its characteristics that can lead 500

to produce more keypoints (e.g. scale, texture). On the other hand, the feature vector 501

matching equation (5) can be modified to implement mirror matching. 502

– On the other hand, it would be interesting to make the parameters of BSK set in an 503

evolutionary or data-driven way. For instance, one can try using a genetic algorithm 504

where the genetic representation uses BSK’s parameters and the fitness function is a 505

performance metric (e.g. P@n) in a training dataset. 506

– We introduce a specific definition of keypoint salience that is based on the proximity 507

between keypoints and the distance between a keypoint and the object contour. Alter- 508

natively, other definition of keypoint salience can be defined for specific applications 509

and compared. 510

In addition to image matching, it would be interesting to investigate applying our descrip- 511

tor in similar applications such as image registration, particularly magnetic resonance (MR) 512

images where the shape information provides significant features [36]. Moreover, it would 513

be interesting to apply our descriptor in color images, in combination with other descrip- 514

tors. For instance, BSK would be fit to embed in the logo retrieval framework proposed 515

in [21], preceded by edge detection, and combined with color images features (SIFT and 516

segmentation patches). 517
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