Skip to main content
Log in

Construction of compressed sensing matrices for signal processing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To cope with the huge expenditure associated with the fast growing sampling rate, compressed sensing (CS) is proposed as an effective technique of signal processing. In this paper, first, we construct a type of CS matrix to process signals based on singular linear spaces over finite fields. Second, we analyze two kinds of attributes of sensing matrices. One is the recovery performance corresponding to compressing and recovering signals. In particular, we apply two types of criteria, error-correcting pooling designs (PD) and restricted isometry property (RIP), to investigate this attribute. Another is the sparsity corresponding to storage and transmission signals. Third, in order to improve the ability associated with our matrices, we use an embedding approach to merge our binary matrices with some other matrices owing low coherence. At last, we compare our matrices with other existing ones via numerical simulations and the results show that ours outperform others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Amini A, Marvasti F (2011) Deterministic construction of binary, bipolar and ternary compressed sensing matrices. IEEE Trans Inf Theory 57(4):2360–2370

    MathSciNet  MATH  Google Scholar 

  2. Amini A, Montazerhodjat V, Marvasti F (2012) Matrices with small coherence using p-ary block codes. IEEE Trans Signal Process 60(1):172–181

    MathSciNet  MATH  Google Scholar 

  3. Applebaum L, Howard S, Searle S, Calderbank R (2009) Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl Comput Harmon Anal 26(2):283–290

    MathSciNet  MATH  Google Scholar 

  4. Baraniuk R (2007) Compressive sensing. IEEE Signal Process Mag 24:118–121

    Google Scholar 

  5. Berinde R, Gilbert A, Indyk P, Karloff H, Strauss M (2014) Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: Proc. 46th Annu. Allerton Conf. Commun., Control, Comput., pp 798–805

  6. Bourgain J, Dilworth S, Ford K, Konyagin S, Kutzarova D (2011) Explicit constructions of RIP matrices and related problems. Duke Math J 159(1):145–185

    MathSciNet  MATH  Google Scholar 

  7. Calderbank R, Howard S, Jafarpour S (2010) Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE Trans Inf Theory 4(2):358–374

    Google Scholar 

  8. Candes E (2006) Compressive sampling. Proceedings of the International Congress of Mathematicians, pp 1433–1452

  9. Candes E (2008) The restricted isometry property and its implications for compressed sensing. Comptes Rendus Math, Acad Sci Paris 346(9–10):589–592

    MathSciNet  MATH  Google Scholar 

  10. Candes E, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    MathSciNet  MATH  Google Scholar 

  11. Candes E, Tao T (2006) Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Trans Inf Theory 52(12):5406–5425

    MathSciNet  MATH  Google Scholar 

  12. Candes E, Romberg J, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurement. Commun Pure Appl Math 59(8):1207–1223

    MathSciNet  MATH  Google Scholar 

  13. Candes E, Romberg J, Tao T (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    MathSciNet  MATH  Google Scholar 

  14. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst Hum 43(4):996–1002

    Google Scholar 

  15. Davenport M, Wakin M (2009) Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans Inf Theory 56(9):4395–4401

    MathSciNet  MATH  Google Scholar 

  16. DeVore R (2007) Deterministic constructions of compressed sensing matrices. J Complex 23(4–6):918–925

    MathSciNet  MATH  Google Scholar 

  17. Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    MathSciNet  MATH  Google Scholar 

  18. Dyachkov AG, Macula AJ, Vilenkin PA (2007) Nonadaptive and trivial two-stage group testing with error-correcting d e-disjunct inclusion matrices, vol 16. Springer, Berlin, pp 71–83

    Google Scholar 

  19. Ionin Y, Kaharaghani H (2007) The CRC handbook of combinatorial designs. CRC Press, Boca Raton, pp 306–313

    Google Scholar 

  20. Jie Y, Guo C, Fu Z (2017) Newly deterministic construction of compressed sensing matrices via singular linear spaces over finite fields. J Comb Optim 34:245–256

    MathSciNet  MATH  Google Scholar 

  21. Karystinos G, Pados D (2003) New bounds on the total squared correlation and optimum design of DS-CDMA binary signature sets. IEEE Trans Inf Theory 51(1):48–51

    Google Scholar 

  22. Li X (2010) Research on measurement matrix based on compressed sensing. Beijing Jiaotong University, thesis of Master Degree, pp 25–31

  23. Li S, Ge G (2014) Deterministic sensing matrices arising from near orthogonal systems. IEEE Trans Inf Theory 60(4):2291–2302

    MathSciNet  MATH  Google Scholar 

  24. Li S, Ge G (2014) Deterministic construction of sparse sensing matrices via finite geometry. IEEE Trans Signal Process 62(11):2850–2859

    MathSciNet  MATH  Google Scholar 

  25. Li S, Gao F, Ge G, Zhang S (2012) Deterministic construction of compressed sensing matrices via algebraic curves. IEEE Trans Inf Theory 58(8):5035–5041

    MathSciNet  MATH  Google Scholar 

  26. Li S (2016) Combinatorial configurations, exponential sums and their applications in signal processing and the design of codes. Dissertation, Zhejiang University

  27. Liu X, Jie Y (2017) Deterministic construction of compressed sensing matrices over finite sets. J Comb Math Comb Comput 100:255–267

    MathSciNet  MATH  Google Scholar 

  28. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: recognizing complex activities from sensor data. Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, pp 1617–1623

  29. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115

    Google Scholar 

  30. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp 1266–1272

  31. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp 201–207

  32. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning. Proceedings of the 25th International Joint Conference on Artificial Intelligence, pp 2576–2681

  33. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimedia Tools and Applications 76(8):10701–10719

    Google Scholar 

  34. Macula AJ (1996) A simple construction of d-disjunct matrices with certain constant weights. Discret Math 162:311–312

    MathSciNet  MATH  Google Scholar 

  35. Natarajan B (1995) Sparse approximate solutions to linear systems. SIAM J Comput 24(2):227–234

    MathSciNet  MATH  Google Scholar 

  36. Needell D, Tropp J (2009) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321

    MathSciNet  MATH  Google Scholar 

  37. Ramu Naidu R, Jampana P, Sastry C (2016) Deterministic compressed sensing matrices: construction via euler squares and applications. IEEE Trans Signal Process 64(14):3566–3575

    MathSciNet  MATH  Google Scholar 

  38. Rao KR, Yip PC (2000) The transform and data compression handbook, 1st edn. CRC, New York

    MATH  Google Scholar 

  39. Strohmer T, Heath R (2003) Grassmannian frames with applications to coding and communication. Appl Comput Harmon Anal 14(3):257–275

    MathSciNet  MATH  Google Scholar 

  40. Sun Y, Gu F (2017) Compressive sensing of piezoelectric sensor reponse signal for phased array structural health monitoring. International Journal of Sensor Networks 23(4):258–264

    Google Scholar 

  41. Sylvester JJ (1867) Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers. Philos Mag 34:461–475

    Google Scholar 

  42. Troop J (2004) Greed is good: algorithmic result for sparse approximation. IEEE Trans Inf Theory 50(10):2231–2242

    MathSciNet  Google Scholar 

  43. Tropp J, Gilbert A (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    MathSciNet  MATH  Google Scholar 

  44. Tsaig Y, Donoho D (2006) Extensions of compressed sensing. Signal Process 86(3):549–571

    MATH  Google Scholar 

  45. Wan Z (2002) Geometry of classical groups over finite fields, 2nd edn. Science, Beijing

    Google Scholar 

  46. Wang K, Guo J, Li F (2011) Singular linear space and its applications. Finite Fields Appl 17:395–406

    MathSciNet  MATH  Google Scholar 

  47. Wootters W, Fields B (1989) Optimal state determination by mutually unbiased measurements. Ann Phys 191(2):363–381

    MathSciNet  Google Scholar 

  48. Wu H, Zhang X, Chen W (2012) Measurement matrices in compressed sensing theory. Journal of Military Communication Technology 33(1):90–94

    Google Scholar 

  49. Xu L, Chen H (2015) Deterministic construction of RIP matrices in compressed sensing from constant weight codes. Science WISE arXiv:1506.02568

    Google Scholar 

  50. Zhang J, Han G, Fang Y (2015) Deterministic construction of compressed sensing matrices from protograph LDPC codes. IEEE Trans Signal Processing Letters 22(11):1960–1964

    Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China under grant No. 61501080, 61572095, and the Fundamental Research Funds for the Central Universities’ under No. DUT16QY09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, Y., Guo, C., Li, M. et al. Construction of compressed sensing matrices for signal processing. Multimed Tools Appl 77, 30551–30574 (2018). https://doi.org/10.1007/s11042-018-6120-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6120-4

Keywords

Navigation