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Abstract—Increasing production and exchange of multimedia 

content has increased the need for better protection of copyright 

by means of watermarking.  Different methods have been 

proposed to satisfy the tradeoff between imperceptibility and 

robustness as two important characteristics in watermarking 

while maintaining proper data-embedding capacity.  Many 

watermarking methods use image independent set of parameters. 

Different images possess different potentials for robust and 

transparent hosting of watermark data.  To overcome this 

deficiency, in this paper we have proposed a new hierarchical 

adaptive watermarking framework.  At the higher level of 

hierarchy, complexity of an image is ranked in comparison with 

complexities of images of a dataset. For a typical dataset of 

images, the statistical distribution of block complexities is found. 

At the lower level of the hierarchy, for a single cover image that 

is to be watermarked, complexities of blocks can be found.  Local 

complexity variation (LCV) among a block and its neighbors is 

used to adaptively control the watermark strength factor of each 

block.  Such local complexity analysis creates an adaptive 

embedding scheme, which results in higher transparency by 

reducing blockiness effects.  This two level hierarchy has enabled 

our method to take advantage of all image blocks to elevate the 

embedding capacity while preserving imperceptibility.  For 

testing the effectiveness of the proposed framework, contourlet 

transform (CT) in conjunction with discrete cosine transform 

(DCT) is used to embed pseudorandom binary sequences as 

watermark.  Experimental results show that the proposed 

framework elevates the performance the watermarking routine 

in terms of both robustness and transparency.   
 

Index Terms—Adaptive watermarking, complexity 

assessment, imperceptibility, robustness, strength factor. 
 

I. INTRODUCTION 

ITH the ease of access to the internet in recent years, 

sharing digital media has become easier and faster.  

Watermarking is an effective way to preserve copyrights and 

media owner’s intellectual property and consequently many 

watermarking techniques have been proposed.  Digital image 

watermarking techniques embed the owners’ copyright 

information into an image in embedding phase and later on, 

can extract this information [1].  The efficiency of these 

techniques depends on perceptual invisibility as well as its 

robustness against intentional and unintentional attacks.  It is 

essential to note that concurrently satisfying both robustness 

and invisibility requirements is a challenging problem.  Blind 

watermarking techniques, which are more attractive, do not 

require the original image for their extraction phase, as 

opposed to non-blind techniques.  Recent techniques use 

transform domain of images for embedding rather than using 

the less robust spatial domain [1].  

In recent years, several transforms domain image 

watermarking algorithms have been proposed.  Most of these 

techniques usually employ Discrete Cosine Transform (DCT) 

[2], Discrete Fourier Transform (DFT) [3], Discrete Wavelet 

Transform (DWT) [4] and Contourlet Transform (CT) [5]-[8]. 

Among the transform domain techniques, DCT and DWT 

based techniques are more popular. DCT based methods are 

robust against simple image processing attacks and JPEG 

compression, but unfortunately these methods are not robust 

to basic transformations such as cropping and resizing [1].  

Since DWT has a number of advantages over DFT and DCT, 

it is widely used in watermarking algorithms. In general, 

DWT based methods use middle or high frequency regions for 

embedding of the watermark [4].  Despite these advantages, 

DWT has some limitations in capturing the directional 

information, which is addressed by CT [9].  Impressive 

properties of CT motivated researchers to apply this transform 

for watermarking purposes.  In [5], a non-blind CT based 

method for image watermarking is proposed. This method 

embeds the watermark into pixels corresponding to high 

frequency coefficients of CT and the number of these 

coefficients is related to the size of the watermark.  Moreover, 

authors of [6] note that CT based methods outperform DWT 

and DCT based techniques.  Song et al. proposed a CT-based 

image adaptive watermarking scheme in which the watermark 

is embedded into the largest detail subband of the image [6].  

The method presented in [7] is a non-blind method that 

embeds a watermark in two scales of contourlet transform.  In 

[8], authors present a CT-based watermarking scheme that 

embeds watermark in directional subband image with highest 

energy.   

In some recent studies a combination of frequency-domain 

transforms are cascaded to increase robustness of 

watermarking schemes [10]-[14].   In [10] a DCT-DWT 

domain method has been proposed.  This method is a dual 

transform-domain watermarking scheme based on the 

orthogonal components of image sub-spaces which provides a 

robust authentication process.  The method presented in [11] 

uses singular values of wavelet coefficients and the method in 

[12] uses values of Hadamard coefficients.  There are also 

methods that embed watermark in DCT coefficients of CT.  

To elevate robustness, [13] presents a hybrid method that uses 

DCT coefficients of CT. This hybrid method distributes 

effects of the embedding by diffusing the changes throughout 

CT coefficients.  In [14] a non-blind watermarking algorithm 

Hierarchical Watermarking Framework Based on 

Analysis of Local Complexity Variations 
Majid Mohrekesh1, Shekoofeh Azizi2, Shahram Shirani3, Nader Karimi1, and Shadrokh Samavi1,3 

1Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran 
2Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, V6T 1Z4 Canada 

3Department of Electrical and Computer Engineering, McMaster University, Hamilton, L8S 4L8 Canada 

 

W 



  

  

2 

is proposed for embedding information into medical images.  

This scheme is another hybrid CT-DCT based method, which 

embeds the watermark into lowpass subband of an image. 

Adaptive image watermarking algorithms specify the 

location and embedding capacity for watermarking according 

to the characteristics of the original image, such as 

complexity, texture, and brightness [15]-[21]. One of the 

earliest methods of adaptive watermarking is presented in 

[22], which employs a regional perceptual classifier to assign 

a noise sensitivity index to each region. This method uses 

average gradient magnitude for spatial adaptive placement of 

watermark. After that, in [23] and [24] adaptive watermarking 

method based on HVS using DCT is presented. Determining 

watermarking parameters such as the strength factor is another 

goal of adaptive methods.  In [24] a DCT based method using 

the addition of watermark is proposed. This method classifies 

blocks of the original image based on visual characteristics of 

each block. Then, strength factor of embedding is adaptively 

adjusted for that block. The method presented in [25] is an 

adaptive blind watermarking algorithm based on image 

content. This method uses Ridgelet transform to extract where 

watermark should be embedded and watermark strength factor 

is adaptively changed based on different image features. In 

[26], authors present a wavelet based method that adjusts the 

location of embedding and strength factor according to the 

characteristics of image. Moreover, authors in [27] employ 

genetic algorithm to find proper strength factor and control 

imperceptibility of method. 

Almost all non-adaptive watermarking methods propose an 

embedding scheme for better imperceptibility or higher 

robustness or a tradeoff of these two. These methods are 

image independent and each offer a bundle of parameters, 

which are analytically or empirically obtained.  Empirical 

parameters usually offer no proves for use and analytic 

alternates often require a huge deal of calculations to reach 

their final goal.  Moreover, wide variations among images 

demand image-based and dynamic selection of parameters for 

a desired embedding scheme. Moreover, a watermarking 

algorithm can adopt two basic types of mechanism for 

embedding a watermark in the image: (a) the spread spectrum 

and (b) relationship enforcement based watermarking. The 

spread spectrum techniques add a noise-like watermark to an 

image and they detect the watermark via a correlator [28]. On 

the other hand, most of the methods that belong to the second 

type use quantization based watermarking [29]-[30].   

In this paper, we propose a framework for adaptive 

watermarking that first tries to find a proper initial embedding 

parameter and then adaptively change the parameter based on 

regional characteristics of the image.  As a basic 

watermarking parameter, strength factor (α) is used for 

adaptivity. Higher values of α cause higher robustness. Those 

methods that use a constant strength factor need to choose a 

mid-size value for α to obtain a mid-point in the conflicting 

spectrums of robustness and transparency.  Hence, in 

comparison with constant α methods, our adaptive scheme 

produces higher robustness in complex areas of the image and 

higher transparency in smooth areas.  A measure of 

complexity is needed to find out which areas of image are 

more and which areas are less complex.   

Figure 1 shows a diagram of the proposed watermarking 

framework.  First, a set of typical images go into “dataset 

complexity assessment” box. The proposed complexity 

assessment measure plays a basic role in this part of the 

framework.  This complexity measure is also used in boxes 

that are labeled as “single image complexity assessment” and 

“block complexity assessment”.  The output of “dataset 

complexity assessment” box is the statistical data of the image 

dataset and will be used to rank the desired cover image in 

“single image complexity assessment” box.  For the cover 

image an initial strength factor, 𝛼𝑖, is produced and is fed to 

“block complexity assessment” box.  The cover image and its 

𝛼𝑖 are sent to the “embedding stage” where for each image 

block, based on its regional complexity, a strength factor, 𝛼𝑚 

is chosen and data is embedded. Adaptive selection of 

strength factor for each block may cause blockiness in smooth 

areas.  Our method uses local complexity variation (LCV) to 

smoothly change strength factors of neighboring blocks to 

avoid blockiness.  To prove the functionality of the proposed 

framework, a hybrid CT-DCT embedding scheme is proposed 

which transforms the image to different CT subbands and 

embeds watermark bits in DCT coefficients of these. Our 

experiments show that intelligent modification of α causes a 

good tradeoff between the perceptual invisibility and 

robustness.   

The remainder of this paper is organized as follows. 

Section  II describes the fundamental objects of the proposed 

framework and interactions between its different parts.  In 

section  III our proposed embedding scheme using CT and 

DCT is described.  Experimental results are presented in 

section  IV.  Finally, section  V concludes the paper. 

II. PROPOSED FRAMEWORK 

In this section, we describe our proposed watermarking 

framework. A review of watermarking methods reveals the 

importance of parameters, such as embedding strength factor, 

, on the overall performance of the algorithm. The value of  
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Fig. 1. Block diagram of proposed framework. 
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directly affects both transparency and robustness, which are 

the two major characteristics of any watermarking method. 

For a specific watermarking algorithm, the set of values or 

range of values dedicated to strength factors should depend on 

the potential capacity of different regions of the image.  This 

also depends on the total number of watermark bits and the 

intended robustness and transparency. Moreover, large 

changes of  in neighboring regions create blockiness and 

should be avoided.  Many watermarking schemes resolve the 

tradeoff between robustness and transparency by empirically 

finding values of parameters such as . A systematic 

framework can find these values and hence lower the 

overhead of finding proper tradeoffs.  One approach to 

achieve this tradeoff is to consider only one of the two 

constraints of transparency and robustness in the first step.  

Then in the second step, the other constraint is satisfied.  

Selecting transparency as the first step, leads us to find more 

proper image regions for watermarking.  The definition of 

properness depends on the intended embedding scheme.  In all 

methods a slight amount of change is imposed to the 

watermarked region.  Changes should not be salient and 

should not attract a human observer attention.  Also, induced 

changes should not cause loss of uniformity or quality of the 

image.  Regions with higher fluctuations have higher capacity 

of embedding and to preserve transparency regions with lower 

fluctuations should be embedded with lower capacity. Next, to 

satisfy the robustness constraint, elevation of embedding 

strength factor in higher capacity regions is considered.  

Hence, complexity of a region in an image is to be defined.  

Then the overall complexity of the cover image should be 

compared with complexities of dataset images to see whether 

the image is considered as smooth or coarse and hence choose 

appropriate initial .  This comparison is called inter-image 

adaptivity. Then image regions are compared with each other 

to decide on how to change the value of  from one region to 

the other.  This is called intra-image adaptivity where each 

region is embedded with a different suitable strength factor.  

In the followings, we present three subsections.  In 

subsection  II-A the idea of block-complexity is presented.  

The proposed framework is independent of such complexity 

definition and other definitions could also be used.  Then in 

subsection  II-B we present the first level of the complexity 

assessment hierarchy which is the assessment of complexity 

of an image as compared with that of the images of the 

database. Then in subsection  II-C intra-image complexity 

assessment is detailed. This is done by ranking of complexity 

of a block as compared with all block-complexities of that 

image. 
 

A. Complexity Assessment 

Regions of image that are more complex could tolerate 

higher modifications without being noticed by human visual 

system (HVS).  Different means of measuring complexity 

could be used in spatial or frequency domains.  In Equation 

(1) we present our own definition using a neighborhood of 

pixels in the spatial domain.  
 

𝐶𝑃[𝑥, 𝑦] =  ∑ ∑ |𝑙𝑥,𝑦 − 𝑙𝑥′,𝑦′|
𝑦+1

𝑦′=𝑦−1

𝑥+1

𝑥′=𝑥−1
 (1) 

 

where 𝐶𝑃[𝑥, 𝑦] is the complexity for pixel 𝑃 at coordinates 

[𝑥, 𝑦] with luminance value of  𝑙𝑥,𝑦. Also, 𝑙𝑥′,𝑦′ refers to the 

luminance values of neighboring pixels at coordinates [𝑥′, 𝑦′].  
Hence, 𝐶𝑃[𝑥, 𝑦] calculates the sum of absolute differences of 

luminance of 8-neighbours of a pixel.  A closer look at  𝐶𝑃 

indicates that it is a kind of texture masking function [28]. 

Larger values of 𝐶𝑃[𝑥, 𝑦] indicate larger fluctuations among 

neighboring pixels, which means changes in intensity values 

of such regions would not be noticed by HVS.  Our 

formulation of complexity is not unique.  Other formulations 

can be considered in both spatial and frequency domains as 

long as they satisfy the relation between complexity and 

noticeability of change by human visual system.  For example 

entropy has been used as a measure of complexity  [20]. Other 

texture masking functions also could replace the proposed 

one, but it is relatively simple and has little complexity for 

calculation, hence its overhead for the watermarking 

algorithm could be negligible.  Figure 2 shows two different 

image blocks.  Both our proposed complexity measure, 𝐶𝑃, 

and entropy, 𝐸, as measure of complexity are used. Entropy 

values of both blocks in Fig. 2 are the same while we see that 

Fig. 2(a) is visually more complex. Our proposed complexity 

measure correctly gives higher complexity to Fig. 2(a).   
 

  

(a) 𝐶𝑃 = 260 , E = 4  (b) 𝐶𝑃 = 26 , E = 4  

Fig. 2.  Different blocks and operation of complexity assessment measures, 

𝐶𝑃: proposed complexity measure and E: entropy. 
 

 

Suppose in every image, M blocks are embedded and blocks 

are labeled as 𝑏𝑙𝑜𝑐𝑘𝑚, 𝑚 = 1, … , 𝑀. We average 𝐶𝑃[𝑥, 𝑦] 
values of pixels of  𝑏𝑙𝑜𝑐𝑘𝑚 to get block-complexity, 𝐶(𝑚), of 

that block.  

B. Inter-image Adaptivity 

Without loss of generality, consider a watermarking scheme 

which needs a single strength factor 𝛼 for its embedding 

process.  Rather than choosing one single 𝛼 for all images it is 

better to choose on for each image. If this 𝛼  were to be 

picked intelligently for every individual image then it would 

be expected that better capacity, robustness, and transparency 

are achieved.  Such custom strength factor chosen for image 𝐼𝑖 

is called 𝛼𝑖.  We define 𝜇𝑖, for an image 𝐼𝑖, as the average 

complexity of pixels based on values of 𝐶𝑃[𝑥, 𝑦].  The 

procedure for calculating 𝛼𝑖 from a dataset of images is 

shown in pseudo code of  TABLE I. In this table 𝜇𝑖 and 𝜇𝐷 

respectively refer to average pixel complexities in image 𝐼𝑖 

and in the dataset of images.  Also, 𝜎𝐷 refers to the standard 

deviation of pixel complexities in the dataset of images.  
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The strength value 𝛼0 is suitable for an image whose 𝜇𝑖 is 

close to 𝜇𝐷 and is in the interval [𝜇𝐷 − 𝜎𝐷, 𝜇𝐷 + 𝜎𝐷].  But if 

an image mean complexity, 𝜇𝑖, is beyond one 𝜎𝐷 from 𝜇𝐷 then 

it would be appropriate to change its initial strength factor 

accordingly.  For such images their 𝛼𝑖 would be higher or 

lower than 𝛼0, depending on their 𝜇𝑖. Analysis on “Classic” 

and “Kodak” datasets show that complexities of most images 

are in the interval [𝜇𝐷 − 𝜎𝐷, 𝜇𝐷 + 𝜎𝐷].  These calculations are 

shown in block diagram of the framework in Fig. 1 as the 

“dataset complexity assessment” and “single image 

complexity assessment”. 
 

TABLE I  

PSUEDO CODE TO COMPUTE α𝑖  FOR INTER-IMAGE ADAPTIVTY. 

Algorithm: Compute 𝛼𝑖 

Inputs:𝑖, 𝛼0  Output:𝛼𝑖 
BEGIN 

FOR all 𝐼𝑖 in Dataset 01 
    FOR all non-border pixels [𝑥, 𝑦] of image 𝐼𝑖 02 
        compute 𝐶𝑃[𝑥, 𝑦] 03 
    END 04 

    𝜇𝑖 ←mean (𝐶𝑃)   05 

    remove (𝐶𝑃)   06 
END 07 

𝜇D ← 𝐚𝐯𝐞𝐫𝐚𝐠𝐞 (𝜇) 08 

𝜎𝐷  ← 𝐬𝐭𝐚𝐧𝐝𝐚𝐫𝐝𝐝𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧(𝜇); 09 
𝛼𝑖  ← 𝛼0 10 

IF |𝜇𝑖 − 𝜇𝐷|>𝜎𝐷 11 

    𝛼𝑖  ← 𝛼0 × (𝜇𝑖 𝜇𝐷)⁄  12 
END 13 

Return(𝛼𝑖) 14 

END 
 
 

Robustness is usually evaluated by criteria such as 

normalized correlation (NC) and bit error rate (BER).  In 

addition, for transparency peak signal to noise ratio (PSNR) 

has been widely used even though perceptual quality 

indicators are more suitable.  Adapting a different value of 𝛼𝑖 

for each image causes more robustness for complex images 

and lower robustness for smooth ones.  On the other hand, 

transparency would be better for smooth images and worse for 

more complex ones.  These tradeoffs cause maintaining mid-

range robustness and transparency values for images of a 

dataset. 

C. Intra-image Adaptivity 

Suppose that for a given watermarking application both 

high capacity of embedding and high robustness are needed. 

Hence, for high robustness a large value of  𝛼𝑖 should be used 

which may cause high distortions in image. We have proposed 

the intra-image phase to solve this problem. Regions of an 

image have different complexities.  Hence, strength factor 

should be a function of the complexity of each region. This 

phase of the framework is done by the “block complexity 

assessment” box of Fig.1. Hence, for each image an initial 

strength factor, 𝛼𝑖, is chosen and used directly for the first 

block.  Thereafter, each block will have an appropriate 

strength factor, 𝛼𝑚, which is derived from local complexity of 

its neighborhood, but is within an interval around 𝛼𝑖.  This 

causes imperceptible embedding even for mostly smooth 

images. We use blocks of pixels to analyze complexities and 

to find differences between regions of an image.  We traverse 

the image in a zigzag manner.  If 𝑏𝑙𝑜𝑐𝑘𝑚 were to be 
embedded, the relative complexity change of  𝑏𝑙𝑜𝑐𝑘𝑚 as 

compared with its previous neighbor, 𝑏𝑙𝑜𝑐𝑘𝑚−1, would be 

calculated.  This relative complexity change is used as a 

criterion for changing of strength factor 𝛼𝑚−1 and 

obtaining 𝛼𝑚. Figure 3 shows the “Elaine” image with its 

corresponding distribution of block complexities.  Most of 

blocks are within the interval [𝜇𝑖 − 𝜎𝑖 , 𝜇𝑖 + 𝜎𝑖] and would use 

αi with no change in its value.  The rest of blocks need their 

custom strength factors (𝛼𝑚).Large changes of 𝛼𝑚among 

neighboring blocks could result in blockiness effects.  Hence, 

blocks are sequentially analyzed and changes in complexity 

between blocks will be analyzed.  This concept is 

implemented by using relative complexity change factor in 

Equation (2): 

𝛾 =  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 =  
𝐶(𝑚) −  𝐶(𝑚 − 1)

𝐶(𝑚 − 1)
 (2) 

 

Figure 4 shows a typical complexity change in a sequence 

of blocks of the “Pepper” image. Relative changes in 

complexity values of image blocks cause relative changes in 

strength factor values of blocks as indicated in Equation (3):  
 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑎𝑙𝑝ℎ𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 =  
𝛼𝑚 − 𝛼𝑚−1

𝛼𝑚−1
 (3) 
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Fig. 3. (a) “Elaine” image, (b) distribution of block-complexities for “Elaine” with a fitted Gaussian envelope. 
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Figure 4 demonstrates a situation in which changes in 

complexities are large which could have resulted in large 

changes in the magnitude of 𝛼𝑚 causing large deviation from 

𝛼𝑖. Such drastic changes in 𝛼𝑚 could have resulted in 

damaging of either robustness or transparency. Controlled 

variations in strength values of blocks (changes in  𝛼𝑚) and 

maintaining these values within a reasonable boundary around 

𝛼𝑖 is obtained by Equation (4): 

𝛼𝑚 = {
      max   {(𝑆−1. (1 + 𝛾). 𝛼𝑚−1), (𝑇1 × 𝛼𝑖)} 𝑖𝑓 𝛾 < 0

 min  {(𝑆. (1 + 𝛾). 𝛼𝑚−1), (𝑇2 × 𝛼𝑖)} 𝑖𝑓 𝛾 ≥ 0
 (4) 

where 𝑇2 × 𝛼𝑖 and 𝑇1 × 𝛼𝑖 are respectively the upper and 

lower bounds for the value of 𝛼𝑚 and 𝑆 is a scaling factor.  As 

implied by Equation (2), positive values of 𝛾 imply growth 

and negative values imply decrease in complexities.  The ratio 

of complexities of 𝑏𝑙𝑜𝑐𝑘𝑚 and its previous neighbor 

𝑏𝑙𝑜𝑐𝑘𝑚−1 is indicated by 1 + 𝛾. This should be also 

proportional to the ratio of 𝛼𝑚 to  𝛼𝑚−1 in order to force 𝛼𝑚to 

track the changes of block complexities. A scaling factor 

𝑆 , (𝑆 ≥ 1), forms an interface between two different concepts 

of complexity and strength factor, and establishes the 

proportionality between these two concepts.  The pair of 

upper and lower bounds try to contain potential large 

fluctuations of 𝛼𝑚 values within a reasonably small interval.  

As an example to visually show the performance of the 

proposed framework some results are shown in Figure 5.  

There, we compared a simple embedding method which uses 

a fixed strength factor of 𝛼 = 50 for all image blocks and we 

compared it with our adaptive method which has 𝛼𝑖 = 50.  A 

simple embedding is performed by swapping DCT 

coefficients of each image block  [13]. This swapping 

technique is explained in details in the next section of the 

paper. The original “Tiffany” image is shown in Fig. 5(a) and 

the adaptive embedded image is shown in Fig. 5(b). We see 

much more artefacts in Fig. 5(c) where the constant strength 

factor is used. The higher performance of the proposed 

framework is more apparent when a part of the image is 

zoomed in.  In Fig. 5(e) we have used higher values of 𝛼𝑚 in 

more complex regions while in smooth areas smaller 𝛼𝑚 

values are used.   Hence, in this example, PSNR value for 

adaptive method is 37.3dB while for the non-adaptive 

embedding is 35.0dB. Also, we get 0.088 higher structural 

similarity index (SSIM) value  [31].  The average bit error rate 

(BER) for both methods is less than 4% after JPEG, Salt and 

Pepper, median filtering and resizing attacks.  This means that 

the watermark was completely retrieved.  The values of NC 

for both methods were more than 0.96 which confirmed the 

BER results. This shows that the visual quality of our 

framework is higher while similar robustness is achieved 

when compared with static strength factor methods. In the 

following section we will use a more complex embedding 

method and compare the static version with the proposed 

adaptive framework.   

 

Fig. 4. Relative change in complexity values and strength factors in a 

sequence of blocks in “Peppers” image for  𝑚 = 28. A sequence with 

increasing complexities results in suppression of strength factors. 
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Fig. 5. (a) "Tiffany" image, (b) embedded image using our adaptive method, (c) embedded image using non-adaptive method, (d), (e) and (f) zoomed 

region of corresponding (a), (b) and (c).  𝛼𝑖=50 is used for embedding. 
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The idea of block-based framework is a general one and 

can be extended to pixel-based methods by considering a 

block size of 1×1. In such especial case, relative complexity 

change of a pixel can be calculated and corresponding 

embedding strength factor can be assigned.  A pixel being the 

smallest element of any image causes the embedding to 

influence image quality at pixel-level.   
 

So far, we have explained all major steps of our proposed 

framework.  Overall complexity of an image with respect to 

other images is assessed by inter-image complexity 

assessment and appropriate 𝛼 is assigned to the image.  In 

addition, relative complexity variations of blocks of the image 

are considered by the intra-image adaptivity and by dynamic 

assignment of 𝛼 to each bock.  In the following section we 

propose our block embedding method. It should be mentioned 

that the proposed embedding method does not limit the 

generality of the proposed framework and other embedding 

methods could be used instead.  
 

III. IMPLEMENTATION OF PROPOSED 

FRAMEWORK 

To implement and test the proposed framework we use 

proposed complexity measure.  Also, for the embedding part 

of the framework we use an improved version of our 

previously published scheme  [20].  We start by determining a 

strength factor for each block of the image using the intra-

image adaptivity stage.  The embedding is done in a cascaded 

DCT and CT (contourlet transform).  The sort of embedding 

and extraction in this method categorizes it in the group of 

spread spectrum watermarking methods.  This method 

diffuses the changes among all of the coefficients and results 

in higher transparency. The strength factor (𝛼) varies based on 

local complexity variations (LCV) of blocks. 

Contourlet transform (CT) can efficiently capture smooth 

contours and edge information of an image in all 

directions   [9].  Do and Vetterli proposed contourlet to 

overcome deficiencies of previously proposed transforms by 

new multi-scale and directional representation of images  [9].  

As shown in Fig. 6, CT consists of two major parts, the 

Laplacian Pyramid (LP) and Directional Filter Bank (DFB).  

The LP decomposition at each level generates a low 

frequency subband image and the difference between the 

original and the prediction, results in a high frequency (HF) 

subband image.  Subband images from the LP part in different 

levels are fed into the DFB part where a directional 

decomposition is performed.  Outputs of this part are 

directional subband images.  In one level of Laplacian 

decomposition of Fig. 6 we see that one low frequency 

subband image and four directional subband images are 

produced.  Low frequency image is the approximate scale and 

the four subband images are called detail scale images  [9].  

Human visual system is less sensitive to minor changes of 

intensity in complex regions such as edges, thus these image 

areas are appropriate candidates for watermark embedding.  

Contourlet transform (CT) represents image edges and 

provides successive refinements at both spatial and directional 

resolutions.  These characteristics of CT can help identifying 

image areas where the watermark can easily be hidden with 

minor distortion.  Hence, in this paper we chose CT to exploit 

these complexity-revealing characteristics. 

This watermarking scheme preserves transparency while it 

is possible to provide more data embedding capacity 

comparing to comparable methods. All of the blocks of the 

contourlet space in both approximate and detail scales are 

used. In the extraction part, the extractor can backtrack the 

embedding process by just having the secret key. This makes 

our method a blind watermarking algorithm. The detailed 

embedding and extraction parts of the algorithm are discussed 

in the following sub-sections. 

 

LP

DFB4

LP

DFB4

LP . . . . . .

512×512 
Input Image

256×256 
LF Subband Image

512×512 
HF Subband Image

 Four Directional  
256×256 

 Subband Images

 Four Directional 
128×128 

 Subband Images

128×128 
LF Subband Image

256×256 
HF Subband Image

 
Fig. 6. An example of CT consisting of LP and DFB parts in two levels 

 

 

 

A. Embedding Scheme 

In the embedding part, after transforming the image to 

contourlet domain, blocks of approximate and detail are fed to 

the DCT transform module. To satisfy concurrent needs for 

robustness and transparency, complex blocks are candidate for 

more robust embedding and smooth ones maintain 

transparency despite embedding. The watermark is a 

pseudorandom binary sequence, forming a bit-stream, which 

is replicated a number of times for redundant embedding to 

achieve higher robustness. The embedding phase is performed 

by processing two specific DCT coefficients of the block in a 

specific order.  Then inverse DCT and inverse CT are 

performed to retrieve the image block and blocks are retiled to 

form the watermarked image.  In this algorithm, inputs 

include original host image, watermark image, mean strength 

factor of the dataset (𝛼0) and a secret key. Output is the 

watermarked image which has good robustness against many 

attacks and has good transparency.  Block diagram of Fig. 7 

shows the embedding process.  The embedding scheme 

consists of these major steps: 
 

1. Receive cover image and dataset 𝛼0.  Calculate the 

initial strength factor (𝛼𝑖).  

2. Decompose original image into approximate and 

detail scales using CT. 

3. Convert watermark into pseudorandom binary 

sequence and replicate it for redundant embedding in 

DCT coefficients of contourlet subbands.  

4. Partition the CT approximate scale into 𝐿𝐴𝐵 × 𝐿𝐴𝐵 

non-overlap blocks and the detail scale images into 

 𝐿𝐷𝐵 ×  𝐿𝐷𝐵 blocks.  
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5. Scan blocks of each subband in a zigzag manner 

starting from upper left for odd rows and from upper 

right for even rows. The zigzag scan order preserves 

more coherence among subsequent blocks in 

comparison with raster scan, which has sudden 

changes in complexities at lines ends.  These scanned 

blocks are fed into the DCT module.  

6. Calculate initial strength factor 𝛼𝑖 for first block and 

thereafter, calculate 𝛼𝑚 as a function of complexities 

of previous and current blocks for intra-image 

adaptivity.  

7. Consider two DCT coefficients at 

positions (𝑢𝐴, 𝑣𝐴) and (𝑤𝐴, 𝑧𝐴) of the approximate 

scale block as candidates for swapping. Also, 

consider two coefficients at positions (𝑢𝐷, 𝑣𝐷) and 
(𝑤𝐷, 𝑧𝐷) as candidates in the corresponding detail 

scale images.  The order of these coefficients 

represent a binary bit in the following manner:  

{
 𝑖𝑓  𝐷𝐶𝑇(𝑢𝐴, 𝑣𝐴) + 𝛼𝑚 < 𝐷𝐶𝑇(𝑤𝐴, 𝑧𝐴)    𝑡ℎ𝑒𝑛  𝑏 = 0

  𝑖𝑓  𝐷𝐶𝑇(𝑢𝐴, 𝑣𝐴) > 𝛼𝑚 + 𝐷𝐶𝑇(𝑤𝐴, 𝑧𝐴)    𝑡ℎ𝑒𝑛   𝑏 = 1 
 (5) 

If the current condition of coefficients represent the 

bit that is to be embedded then no change is required.  

Otherwise, swap the coefficients and, if needed, add 

𝛼𝑚 such that their order represents the desired bit 

from the replicated bit-streams.  Strength factor (𝛼𝑚) 

is a positive margin, which ensures reliable 

difference between the two candidate coefficients for 

robustness against attacks. 

8. Return to step 4 if the watermark bit-stream is not 

finished.  

9. Perform inverse DCT and retile blocks to reconstruct 

approximate and detail scales of contourlet 

transform. 

10. Apply inverse CT for reconstruction of watermarked 

image. 

 
The replication which mentioned in step 3 causes a 

redundant embedding of watermark data in the host image to 

increase the robustness and enhance fidelity of extracted 

watermark in the presence of attacks. This redundancy is 

dependent on the algorithm’s parameters such as image size 

 (𝑀 × 𝑁) and the length of binary sequence  (𝐿𝑤).  Suppose the 

approximate scale of an image in the first level of CT is to be 

partitioned into 𝐿𝐴𝐵 × 𝐿𝐴𝐵 blocks.  Hence, the number of 

blocks in the approximate scale will be: 

# 𝑜𝑓 𝐵𝑙𝑜𝑐𝑘𝑠𝐴 =
𝑀 × 𝑁

4 × 𝐿𝐴𝐵
2 (6) 

 

and the maximum degree of redundancy in this scale would 

be: 

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦𝐴 =
𝜌

4 × 𝐿𝐴𝐵
2 (7) 

 

here 𝜌 is the ratio of the total number of image pixels (𝑀 × 𝑁) 

to the length of binary sequence  (𝐿𝑤). The degree of 

redundancy in the detail scale is: 

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦𝐷 =
𝜌

𝐿𝐷𝐵
2 (8) 

 

where 𝐿𝐷𝐵 represents the side length of square blocks in the 

detail scale. 

B. Extraction Scheme  

The watermarking method that we used is blind and neither 

the original image nor any side-information is required in the 

extraction phase. Output of the extraction step is the 

watermark that was embedded in the original image. Our 

proposed extraction scheme consists of these steps: 
 

1. Decompose watermarked image to approximate and 

detail scales using CT. 

2. Partition the approximate scale into 𝐿𝐴𝐵 × 𝐿𝐴𝐵 

nonoverlap blocks and the detail scale into 𝐿𝐷𝐵 ×

𝐿𝐷𝐵blocks.  

3. Scan blocks in a zigzag manner from upper left for 

odd rows and from upper right for even rows and 

deliver scanned values sequentially to the DCT 

module.  

4. For each block of scale 𝑠, watermark bit  𝑏  is 

extracted using Equation (9): 

 𝑏 = {
0 𝑖𝑓  𝐷𝐶𝑇(𝑢𝑠, 𝑣𝑠) < 𝐷𝐶𝑇(𝑤𝑠, 𝑧𝑠)

1 𝑖𝑓 𝐷𝐶𝑇(𝑢𝑠, 𝑣𝑠) > 𝐷𝐶𝑇(𝑤𝑠, 𝑧𝑠)
 (9) 

5. After extracting all watermark bits from each scale, 

pseudorandom binary sequence is reconstructed and 

the final watermark is obtained by majority weighted 

voting between intermediate extracted watermarks. 

Replicate

Contourlet 
Transform

ICT

Watermarked 
Image

DCT
DCT Coefficients 

Modification
IDCT

Image
L×L Block 
Partioning 

Block 
Retiling

Adaptive  α 
Change

Generate  αi

 α0

Watermark

 αi

 Ci

 αm

 
Fig. 7. Block diagram of proposed embedding scheme. 
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IV. EXPERIMENTAL RESULTS 

For this section, several experiments have been done to 

evaluate performance of the proposed method.  As host 

images, we used fifteen grayscale classical images including 

“Lena”, “Peppers”, “Barbara”, “Airplane”, “Man”, and 

“Goldhill” with 512 × 512 pixels. To extend our experiments 

we also used 24 grayscale images of Kodak dataset with size 

of 786 × 512 pixels.  In addition, 18 images of Canon dataset 

are tested and a 128-bit payload was used as the embedded 

data.  The results were obtained by averaging over 20 runs 

with 20 different pseudorandom binary sequences as the 

watermark. In these experiments, decomposition of image was 

done with one pyramidal level of CT, which then decomposed 

into four directional subband images. A pair of “9-7” 

biorthogonal filters was used for both the LP and DFB stages. 

As mentioned in section III-A approximate and detail scales 

are partitioned into 𝐿𝐴𝐵 × 𝐿𝐴𝐵 and 𝐿𝐷𝐵 × 𝐿𝐷𝐵 blocks 

respectively.  Each directional subband image has the same 

size as the approximate scale.  In our experiments LAB is set to 

4 and LDB to 16 to dedicate 4 times relative capacity of 

embedding to approximate scale. Coordinates of the selected 

coefficients in each block of approximate scale are (𝑢, 𝑣) =
(3,4) and (𝑤, 𝑧) = (4,3) and the corresponding coordinates in 

detail scale are(𝑢, 𝑣) = (14,15) and (𝑤, 𝑧) = (15,14) in 

cascaded DCT. Starting values of 𝛼0 were respectively 11 and 

9 in the approximate and detail scales. Parameters to control 

strength factor 𝛼𝑚 were empirically chosen as 𝑆 = 1.1,𝑇1 =
0.5 and 𝑇2 = 1.5.  MATLAB 7.12.0 has been the 

implementation platform.  

To evaluate performance of our proposed framework for 

adaptive watermarking, we compare visual quality and 

robustness of adaptive and non-adaptive scheme with each 

other.  In non-adaptive scheme strength factor in all of blocks 

and all of images are constant and is equal to initial strength 

factor. For fair comparison all parameters in non-adaptive 

scheme are the same as the proposed adaptive one. 

A. Visual Quality 

Figure 8 illustrates original test images and watermarked 

images using the proposed adaptive method for a message 

length of 1024 bits.  It can be seen that the watermarked 

images using the proposed approach have high perceptual 

qualities. In addition, our method has consistent performance 

both in high and low texture parts of images. 

Even for small watermark strings of size 128 bits, our 

framework shows superior visual quality as compared with 

non-adaptive comparable method.  For example when 

embedding into the Peppers image, the output watermarked 

image of our framework has a PSNR of 46.508dB.  Using 

non-adaptive comparable method when the same 128 bits of 

data was embedded into the Peppers image, we got a PSNR of 

45.450dB, which is 1.058dB lower than our method.  

Moreover, when embedding longer bit-streams, such as 1024 

bits of data, we get higher overall PSNR values.  For Kodak 

images, we get an average PSNR of 42.414dB when our 

framework is used as compared to 41.955dB when non-

adaptive comparable embedding is used.   
 

B. Robustness against Attacks 

To evaluate the robustness of the proposed embedding 

method as a part of the proposed framework, watermarked 

images were tested against various categories of attacks, such 

as, geometrical, noising, denoising, compression and image 

processing attacks.  Specific attacks included Rotation (R), 

    
(a)  Original Lena (b) Watermarked Lena, 

PSNR= 45.896 

(c)  Original Peppers (d) Watermarked Peppers, 

PSNR= 45.310 

    
(e)  Original Barbara (f)  Watermarked Barbara, 

PSNR= 40.550 

(g)  Original Airplane (h) WatermarkedAirplane, 

PSNR= 47.694 

 

   Fig. 8. (a), (c), (e) and (g): Original images, (b), (d), (f) and (h): corresponding watermarked images using proposed method with 1024 bits message length. 
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Cropping (C), Resizing (RS), addition of Gaussian Noise 

(GN), Salt and Pepper noise (S&P), Median Filter (MF), 

Histogram Equalization (HE), Gamma Correction (GC) and 

Sharpening (SH). For evaluation of robustness, similarities 

between the original and extracted watermarks were measured 

by normalized correlation (NC) and bit error rate (BER).  

In the first experiment, the proposed technique was tested 

against JPEG compression with different quality factors. As 

seen in Fig. 9 the proposed method was highly robust against 

JPEG compression with different quality factors down to 

40%, and still extractable for 30%.  Also in this figure, we can 

see a comparison between the proposed scheme and the non-

adaptive version based on average NC values for 20 different 

runs of embedding in 15 different classic test images. The 

comparison verified that the adaptive scheme has better 

robustness than the non-adaptive version in compression 

attacks.   

In the next experiment, we investigated the robustness 

against geometrical attacks include cropping, rotation and 

resizing. We assumed the loss of synchronization due to 

geometric attacks can be compensated by a synchronization 

technique, so we concentrate only on the distortion due to 

these attacks [8][16].  Watermarking algorithms take the 

image and the payload data as inputs and produce the 

watermarked image as the output.  To have a fair comparison 

between two algorithms it is enough that same image and 

same payload data are fed into the two comparing algorithms.  

Hence, we considered a payload of 128 bits for all of the 

tested methods.  This payload is what other algorithms have 

used to test and report their results.  Then we compared the 

produced outputs in terms of transparency and robustness.  If 

an algorithm uses redundancy, it is jeopardizing the 

transparency of its output.   
 

As seen in Fig. 10 our proposed scheme had higher 

robustness against cropping attack when the cropping ratio 

was less than or equal 50% of the image. In addition, average 

NC values for 15 different test images with 20 different 

messages shows that adaptive scheme has higher robustness 

against this attack as compared with the non-adaptive version.   

In TABLE II we are showing produced results for 4 standard 

images.  In addition, mean values of all results obtained from 

applying the method to all images in the datasets are 

reported.   TABLE II shows high robustness of our scheme 

under rotation attacks with different angles. In addition, 

average NC values of the adaptive method were higher than 

the non-adaptive version.  Moreover, for resizing attacks with 

scaling factors between 0.5 and 2 our scheme can extract 

watermark completely and with no error.  In general, from 

these experiments we can say that our adaptive scheme has 

high robustness against geometrical attacks. 
TABLE II  

NC VALUES OF EXTRACTED WATERMARK UNDER ROTATION ATTACKS 

 

 

 
Fig. 9. NC values of extracted watermark under JPEG compression attack with 

different quality factors. 

 

 Fig. 10. NC of extracted watermark under Cropping attack with different 

cropping ratios. 

 

 

 

 
Fig. 11. NC values of extracted watermark with added Salt & Pepper noise  

with different noise densities. 
 Fig. 12. NC values of extracted watermark under additive Gaussian Noise  

(GN) attack with different noise variances. 
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(MESSAGE LENGTH = 128 BITS) 

Images (NC) 0.5º 1º 2º 25º 45º 

Lena 0.993 0.987 0.980 0.993 1.000 

Peppers 0.953 1.000 0.980 1.000 0.980 

Barbara 0.987 0.966 0.993 0.987 1.000 

Airplane 0.993 1.000 1.000 1.000 1.000 

Mean of Adaptive Method 0.982 0.988 0.988 0.995 0.995 

Mean of Non-adaptive Method 0.973 0.974 0.967 0.985 0.977 
 

 
TABLE III  

NC VALUES OF EXTRACTED WATERMARK UNDER MEDIAN FILTERING 

ATTACK(MESSAGE LENGTH = 128 BITS) 

Images 
Adaptive Proposed Scheme xx Non-adaptive Scheme 

3×3 5×5 7×7 xx 3×3 5×5 7×7 

Lena 1.000 0.730 0.674  1.000 0.658 0.593 

Peppers 1.000 0.723 0.670  1.000 0.663 0.588 

Barbara 1.000 0.780 0.671  1.000 0.660 0.588 

Airplane 1.000 0.772 0.674  1.000 0.722 0.593 

 
In the third experiment, we investigated the effect of 

noising attacks to the proposed adaptive watermarking 

scheme. For this purpose, we considered additive white GN 

and Salt & Pepper noise with different noise variances and 

noise densities. In Fig. 11 and Fig. 12, average NC values of 

the proposed method and its non-adaptive version are 

compared for various images under these attacks. The last 

attack we studied was median filtering attack.  TABLE III 

shows NC results for median filtering with different window 

sizes for some classic test images. It can be seen that the 

proposed scheme is highly robust against filtering attacks and 

compare to non-adaptive version has higher robustness. 
 

TABLE IV and TABLE V shows the resulted NC and BER 

values for extracted logo after the watermark images were 

attacked by geometrical, noising, denoising and image 

processing attacks.  Attacks included Rotation 20º and 45º(R), 

Cropping 10% and 25% (C), Resizing ½ (RS), addition of 

Gaussian Noise 0.005 (GN), Salt and Pepper noise 0.01 

(S&P), JPEG Compression 70% (JC), Median Filter 3×3 

(MF), Histogram Equalization (HE), Gamma Correction (GC) 

and Sharpening (SH). We see that our extracted watermark 

from the Kodak and Canon dataset have higher average NC 

and lower average BER values.  

C. Comparison with Other Schemes 

To evaluate our method we compared its perceptual quality 

and robustness with three transform domain state-of-the-art 

algorithms presented in [8], [15], and [16]. The method of [8] 

is a recent algorithm which uses CT for embedding purposes 

and could be considered comparable with our method. The 

method in [16] is another adaptive method that uses wavelet 

and has high performance. Also the method in [16] was 

  
Fig. 13. Robustness measure using BER% for comparison of proposed method 

with [8], [16], and [19] under JPEG attack. 

Fig. 14. Robustness measure using BER% for comparison of proposed 

method with [8] and [16] under resizing attack. 

 

TABLE IV 

AVERAGE NC AND BER VALUES OF  EXTRACTED LOGOS FROM KODAK DATASET USING ADAPTIVE AND NON-ADAPTIVE METHOD 

(MESSAGE LENGTH = 128 BITS) 

Methods Mean GC HE MF JC S&P RS SH GN C10% C25% R20º R45º 

Adaptive 
NC 1.000 0.996 0.975 0.924 0.964 0.965 0.998 0.871 0.945 0.842 0.915 0.922 

BER 0.000 0.006 0.035 0.104 0.051 0.050 0.003 0.186 0.075 0.160 0.096 0.091 

Non-adaptive 
NC 1.000 0.992 0.949 0.922 0.912 0.961 0.997 0.847 0.750 0.628 0.845 0.875 

BER 0.001 0.011 0.069 0.105 0.118 0.053 0.004 0.202 0.303 0.419 0.203 0.188 

 

TABLE V 

AVERAGE NC AND BER VALUES OF  EXTRACTED LOGOS FROM CANON DATASET USING ADAPTIVE AND NON-ADAPTIVE METHOD  

(MESSAGE LENGTH = 128 BITS) 

Methods Mean GC HE MF JC S&P RS SH GN C10% C25% R20º R45º 

Adaptive 
NC 1.000 1.000 1.000 1.000 0.921 1.000 1.000 0.916 0.899 1.000 0.997 1.000 

BER 0.000 0.000 0.000 0.000 0.099 0.000 0.000 0.086 0.102 0.000 0.003 0.000 

Non-adaptive 
NC 1.000 1.000 1.000 0.998 0.857 0.991 0.999 0.915 0.898 0.990 0.982 1.000 

BER 0.000 0.000 0.000 0.000 0.181 0.010 0.000 0.087 0.103 0.011 0.020 0.343 
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selected on the basis of its similarity to our method and this 

method is the nearest competitor to our method.  The use of 

two-layer complexity assessment of the framework is our 

advantage over [16].  TABLE VI compares PSNR values of 

watermarked images using proposed adaptive method with its 

non-adaptive version and those of [8] and [16].  In this table, 

we are showing results from four images that are used in [8] 

and [16] as well as the average PSNR that these references 

have reported.  Also, in  TABLE VI we are reporting the 

average PSNR that we have obtained from all images of the 

dataset.  PSNR values of our method are higher than non-

adaptive method and method of [8].  Also, in this table 

average PSNR values of our adaptive method is comparable 

with method presented in [16].  Although in Goldhill and 

Airplane we have better PSNR, but our PSNR for Barbara is 

less that of [16]. These results show that we have higher or 

comparable perceptual qualities. 
 

TABLE VI  

COMPARISON BETWEEN IMPERCEPTIBILITY OF OUR WM FRAMEWORK AND 

METHODS IN  [8]AND  [16]: PSNR (dB) 

Method Goldhill Barbara Peppers Airplane Average 

Proposed adaptive method 48.47 40.15 46.51 47.40 46.922 

Non-adaptive version 47.90 39.58 45.45 46.46 46.216 

Ref. [8] --- 36.63 --- --- 40.182 

Ref. [16] 47.26 48.15 47.08 45.61 46.982 

 
TABLE VII  

BER (%) COMPARISON OF OUR METHOD WITH [15] AND [16] FOR MEDIAN 

FILTERING ATTACK (MESSAGE LENGTH = 128 BITS) 

Method 3×3 5×5 7×7 

Adaptive method 00.0 00.0 42.0 

Non-adaptive method 00.0 34.6 59.9 

Ref. [15]  52.4 54.9 60.2 

Ref. [16]  3.20 17.9 ---- 

 
TABLE VIII  

BER (%) COMPARISON OF OUR METHOD WITH [8] AND [16] FOR ROTATION 

ATTACK (MESSAGE LENGTH = 128 BITS) 

Method  0.5º 1º 2º 

Adaptive method 2.148 1.367 1.367 

Non-adaptive method 2.930 2.734 3.516 

Ref. [8]  1.478 2.032 1.984 

Ref. [16]  1.440 1.570 1.955 
 

 

As shown in Fig. 13 our method has higher robustness in 

high quality JPEG compression than [8]. Method of [16] is 

specifically designed for JPEG compression attacks and has 

high robustness against such attacks.  Method of [16] can 

extract watermark with no error after compression quality 

factors of as low as 20%. Also our method can extract 

watermark with no error after compression with quality 

factors as low as 70% and for quality factors between 40% 

and 70% has acceptable BER.  As shown in Fig. 14, unlike 

compression, our adaptive method under resizing attack has 

better robustness compared to [16] and can completely extract 

watermark under resizing attack with scaling factors less than 

2.  These results are achieved due to embedding redundancy.  

Adaptive change of the strength factor has the potential of 

embedding with minimal loss of visual quality and higher 

robustness. Also, employing redundancies in the transform 

domain further enhances the robustness.  

 TABLE VII and  TABLE VIII compare robustness of our 

method with selected methods in terms of BER% under 

filtering and rotation attacks. As seen in  TABLE VII for all 

window sizes, our method has lower BER and higher 

robustness as compared to [15] and [16].  For most rotation 

attacks, proposed adaptive method has better performance 

compared to [8] and [16]. 

V. CONCLUSION 

In this paper, we proposed a framework for adaptive 

watermarking to enhance both robustness and imperceptibility 

of embedding schemes. To prove the functionality of the 

framework it was implemented and a criterion for measuring 

local pixel complexity was proposed.  The proposed 

framework is not constrained by the proposed complexity 

criterion and other means of complexity measure could be 

applied too. Watermarking adaptivity was achieved by 

controlling block-based embedding strength factor using 

block-complexity analysis. The notion of complexity was 

defined as a relative concept and was considered in a two 

level hierarchical structure. At the first level of the hierarchy, 

the general complexity of an image with respect to a large set 

of standard images is considered. At the second level, 

complexity of a block in the target image is determined. 

Strength factor is used as a major controlling parameter in 

most watermarking schemes.  The proposed framework could 

host any embedding scheme that uses strength factor.  This 

shows the versatility of the framework.  To demonstrate that 

the framework could elevate both robustness and 

imperceptibility, we improved a hybrid CT-DCT blind 

embedding method.  Comparison between the proposed 

adaptive and non-adaptive methods showed that the proposed 

framework was capable of full exploitation of image 

embedding capacity while keeping high robustness and 

imperceptibility.  We verified higher performance of our 

method by using PSNR to show imperceptibility, as well as 

using NC and BER to measure robustness. 
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