Skip to main content
Log in

Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Texture image classification, especially for images with substantial changes in rotation, illumination, scale and point of view, is a fundamental and challenging problem in the field of computer vision. Natural images acquired under uncontrolled environments have textures with unknown orientation angles. Therefore, it is difficult to identify the same known texture at different acquisition angles. A common solution is image rotation by means of an interpolation technique. However, texture descriptors are not effective enough when two similar textures acquired at different angles are compared. In this work, we propose a simple and efficient image descriptor, called Completed Local Mapped Pattern (CLMP), and apply it to the texture classification of rotated images. This new approach is an improvement over the previously published Local Mapped Pattern (LMP) descriptor because the new approach includes the signal and the magnitude information. This innovation is more discriminating and robust for the description of rotated textures at arbitrary angles. We used two image datasets to validate the proposed descriptor: the Kylberg Sintorn Rotation Dataset and the Brodatz Texture Rotation Dataset. We also introduced a new texture dataset, which contains rotated texture images from Brodatz’s Album. The database contains images of natural textures that have been rotated by both hardware and interpolation methods. We presented an evaluation of the influence of the interpolation method on image rotation, compared with different descriptors in the literature. The experimental results show that our proposed CLMP descriptor outperforms the widely used Completed Local Binary Pattern (CLBP) descriptor and the recently published Sampled Local Mapped Pattern Magnitude (SLMP_M) descriptor. Our results also demonstrate that the choice of interpolation method influences the descriptive capability of each descriptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Andrearczyk V, Whelan PF (2016) Using filter banks in convolutional neural networks for texture classification. Pattern Recogn Lett 84:63–69

    Article  Google Scholar 

  2. Arivazhagan S, Ganesan L, Padam SP (2006) Texture classification using Gabor wavelets based rotation invariant features. Pattern Recogn Lett 27(16):1976–1982

    Article  Google Scholar 

  3. Brodatz P (1966) Textures: a photographic album for artists and designers. Dover Pubns

  4. Brodatz Texture Rotation Dataset (2017) Available online at <http://imagem.sel.eesc.usp.br/base/Brodatz_rotated/index.html>. Accessed 7 Mar 2018

  5. Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANet: a simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032

    Article  MathSciNet  Google Scholar 

  6. Charalampidis D, Kasparis T (2002) Wavelet-based rotational invariant roughness features for texture classification and segmentation. IEEE Trans Image Process 11(8):825–837

    Article  Google Scholar 

  7. Chen C, Zhang B, Su H, Li W, Wang L (2016) Land-use scene classification using multi-scale completed local binary patterns. SIViP 10(4):745–752

    Article  Google Scholar 

  8. Cimpoi M, Maji S, Vedaldi A (2015) Deep filter banks for texture recognition and segmentation. In: Computer vision and pattern recognition (CVPR), 2015 IEEE conference on, pp 3828–3836

  9. Cun H, Fei H, Hassanien AE, Xiao K Texture-based rotation-invariant histograms of oriented gradients. In: Computer Engineering Conference (ICENCO), 2015 11th International. IEEE, pp 223–228

  10. Deng H, David AC (2004) Gaussian MRF rotation-invariant features for image classification. IEEE Trans Pattern Anal Mach Intell 26(7):951–955

    Article  Google Scholar 

  11. Dharmagunawardhana C, Mahmoodi S, Bennett M, Niranjan M (2016) Rotation invariant texture descriptors based on gaussian markov random fields for classification. Pattern Recogn Lett 69:15–21

    Article  Google Scholar 

  12. Do MN, Vetterli M (2002) Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models. IEEE Transactions on Multimedia 4(4):517–527

    Article  Google Scholar 

  13. Fernández A, Ghita O, González E, Bianconi F, Whelan PF (2011) Evaluation of robustness against rotation of LBP CCR and ILBP features in granite texture classification. Mach Vis Appl 22(6):913–926

    Article  Google Scholar 

  14. Ferraz CT, Gonzaga A (2016) Object classification using a local texture descriptor and a support vector machine. Multimedia Tools and Applications 1–33

  15. Ferraz CT, Pereira Jr O, Gonzaga A (2014) Feature description based on center-symmetric local mapped patterns. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing. ACM, pp 39–44

  16. Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn 43(3):706–719

    Article  Google Scholar 

  17. Guo Z, Lei Z, David Z (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  18. Guo Z, Li Q, You J, Zhang D, Liu W (2012) Local directional derivative pattern for rotation invariant texture classification. Neural Comput & Applic 21(8):1893–1904

    Article  Google Scholar 

  19. Jafari-Khouzani K, Soltanian-Zadeh H (2005) Rotation-invariant multiresolution texture analysis using radon and wavelet transforms. IEEE Trans Image Process 14(6):783–795

    Article  MathSciNet  Google Scholar 

  20. Jafari-Khouzani K, Soltanian-Zadeh H (2005) Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans Pattern Anal Mach Intell 27(6):1004–1008

    Article  Google Scholar 

  21. Jin H, Liu Q, Lu H, Tong X (2004) Face detection using improved LBP under Bayesian framework. In: Image and Graphics (ICIG’04), Third International Conference on. IEEE, pp 306–309

  22. Jing H, Xinge Y, Yuan Y, Feng Y, Lin L (2010) Rotation invariant iris feature extraction using Gaussian Markov random fields with non-separable wavelet. Neurocomputing 73(4):883–894

    Google Scholar 

  23. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105

  24. Kun L, Henrik S, Thorsten S, Thomas B, Klaus P, Thomas B, Olaf R (2013) Rotation-invariant hog descriptors using fourier analysis in polar and spherical coordinates. Int J Comput Vis 106(3):342–346

    MathSciNet  MATH  Google Scholar 

  25. Kylberg G, Sintorn IM (2016) On the influence of interpolation method on rotation invariance in texture recognition. EURASIP Journal on Image and Video Processing 2016(1):17

    Article  Google Scholar 

  26. Kylberg G, Sintorn I M, Kylberg Sintorn Rotation dataset (2015) Available online at <http://www.cb.uu.se/~gustaf/KylbergSintornRotation/>. Accessed 6 Aug 2017

  27. Li Z, Liu G, Yang Y, You J (2012) Scale- and rotation-invariant local binary pattern using scale-adaptive Texton and subuniform-based circular shift. IEEE Trans Image Process 21(4):2130–2140

    Article  MathSciNet  Google Scholar 

  28. Liu L, Fieguth P, Guo Y, Wang X, Pietikäinen M (2017) Local binary features for texture classification: taxonomy and experimental study. Pattern Recogn 62:135–160

    Article  Google Scholar 

  29. Negri TT, Zhou F, Obradovic Z, Gonzaga A (2017) A robust descriptor for color texture classification under varying illumination. In: Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP), 2017 12th International Joint Conference on, vol 4, pp 378–388

  30. Nosaka R, Fukui K (2014) Hep-2 cell classification using rotation invariant co-occurrence among local binary patterns. Pattern Recogn 47(7):2428–2436

    Article  Google Scholar 

  31. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  32. Pillai A, Soundrapandiyan R, Satapathy S, Satapathy SC, Jung KH, Krishnan R (2018) Local diagonal extrema number pattern: a new feature descriptor for face recognition. Futur Gener Comput Syst 81:297–306

    Article  Google Scholar 

  33. Pun CM, Lee MC (2003) Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE Trans Pattern Anal Mach Intell 25(5):590–603

    Article  Google Scholar 

  34. Rassem TH, Khoo BE, Makbol NM, Alsewari AA (2017) Multi-scale colour completed local binary patterns for scene and event sport image categorisation. IAENG Int J Comput Sci 44(2)

  35. Ryu J, Hong S, Yang HS (2015) Sorted consecutive local binary pattern for texture classification. IEEE Trans Image Process 24(7):2254–2265

    Article  MathSciNet  Google Scholar 

  36. Sánchez-Yáñez RE, Kurmyshev EV, Fernández A (2003) One-class texture classifier in the CCR feature space. Pattern Recogn Lett 24(9):1503–1511

    Article  Google Scholar 

  37. Sifre L, Mallat S (2012) Rotation, scaling and deformation invariant scattering for texture discrimination. In: Computer vision and pattern recognition (CVPR), 2013 IEEE conference on, pp 1233–1240

  38. Song Y, Zhang F, Li Q, Huang H, O’Donnell LJ, Cai W (2017) Locally-transferred fisher vectors for texture classification. Proc IEEE Conf Comput Vis Pattern Recognit 22-29:4912–4920. https://doi.org/10.1109/ICCV.2017.526

    Article  Google Scholar 

  39. Souza JM, Vieira RT, Gonzaga A (2015) Analysis of iris texture under pupil contraction/dilation for biometric recognition. In: Workshop de Visão Computacional, pp 128–133

  40. Tamrakar D, Khanna P (2016) Noise and rotation invariant RDF descriptor for palmprint identification. Multimedia Tools and Applications 75(10):5777–5794

    Article  Google Scholar 

  41. Vieira RT, Negri TT, Gonzaga A (2016) Robustness of rotation invariant descriptors for texture classification. In: International Symposium on Visual computing. Springer International Publishing, pp 268–277

  42. Vieira RT, Negri T, Cavichiolli A, Gonzaga A (2017) Human epithelial type 2 (HEp-2) cell classification by using a multiresolution texture descriptor. In: Computer vision (WVC), 2017 workshop of, pp 1–6

  43. Wan S, Lee HC, Huang X, Xu T, Xu T, Zeng X, Zhou C (2017) Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy. Med Image Anal 38:104–116

    Article  Google Scholar 

  44. Yadav AR, Anand RS, Dewal ML, Gupta S (2017) Binary wavelet transform-based completed local binary pattern texture descriptors for classification of microscopic images of hardwood species. Wood Sci Technol 51(4):909–927

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the São Paulo Research Foundation (FAPESP), grant #2015/20812−5, for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adilson Gonzaga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, R.T., Negri, T.T. & Gonzaga, A. Improving the classification of rotated images by adding the signal and magnitude information to a local texture descriptor. Multimed Tools Appl 77, 31041–31066 (2018). https://doi.org/10.1007/s11042-018-6204-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6204-1

Keywords

Navigation