Skip to main content
Log in

Discriminant maximum margin projections for face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel dimensionality reduction algorithm called discriminant maximum margin projections (DMMP) for face recognition. By discovering both geometrical and discriminant structures of the data points, DMMP aims at finding a subspace that optimally preserves the local neighborhood information of the data set, as well as maximizes the margin between data points from different classes at each local area. Moreover, DMMP utilizes a equilibrium parameter to adjust the significance of the locality preserving property and margin distances of the data points. Finally, with the experiments used face recognition data sets, such as the ORL, Yale, and FERET face databases, the results prove that DMMP can attain a better effectiveness than most other advanced approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  2. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  3. D. Cai, X. F. He, K. Zhou (2007) Locality sensitive discriminant analysis. In Proc of international joint Conf On artificial intelligence, Hyderabad, India, 2007:708–713

  4. Chen LF, Liao HYM, Ko MT (2000) A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recogn 33(10):1713–1726

    Article  Google Scholar 

  5. Dai DQ, Yuen PC (2003) Regularized discriminant analysis and its application to face recognition. Pattern Recogn 36(36):845–847

    Article  MATH  Google Scholar 

  6. He XF, Niyogi P (2003) Locality preserving projections. In: Proc of international Conf On neural information processing systems, University of Chicago Chicago, USA, 2003:153–160

  7. Howland P, Park H (2004) Generating discriminant analysis using the generalized singular value decomposition. IEEE Trans Pattern Anal Mach Intell 26(8):995–1006

    Article  Google Scholar 

  8. Howland R, Wang J, Park H (2006) Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recogn 39(2):277–287

    Article  Google Scholar 

  9. Huang P, Gao GW (2015) Local similarity preserving projections for face recognition. AEU Int J Electron Commun 69(11):1724–1732

    Article  Google Scholar 

  10. Huang P, Gao GW (2016) Parameterless reconstructive discriminant analysis for feature extraction. Neurocomputing 190:50–59

    Article  Google Scholar 

  11. Huang P, Yang ZJ, Chen CK (2015) Fuzzy local discriminant embedding for image feature extraction. Comput Electr Eng 46:231–240

    Article  Google Scholar 

  12. Huang P, Lai ZH, Gao GW (2016) Adaptivelinear discriminant regression classification for face recognition. Digital Signal Process 55:78–84

    Article  Google Scholar 

  13. Jiang X, Mandal B, Kot A (2008) Eigenfeature regularization and extraction in face recognition. IEEE Trans Pattern Anal Mach Intell 30(3):383–394

    Article  Google Scholar 

  14. Lai ZH, Wong WK, Xu Y (2014) Sparse alignment for robust tensor learning. IEEE Trans Neural Netw Learn Syst 25(10):1779–1792

    Article  Google Scholar 

  15. Lai ZH, Xu Y, Chen QC (2014) Multilinear sparse principal component analysis. IEEE Trans Neural Netw Learn Syst 25(10):1942–1950

    Article  Google Scholar 

  16. Li JB, Pan JS, Chu SC (2008) Kernel class-wise locality preserving projection. Inf Sci 178(7):1825–1835

    Article  MATH  Google Scholar 

  17. Li ZC, Liu J, Lu HQ (2013) Structure preserving non-negative matrix factorization for dimensionality reduction. Comput Vis Image Underst 117(9):1175–1189

    Article  Google Scholar 

  18. Li ZC, Liu J, Yang Y (2014) Clustering-guided sparse structural learning for unsupervised feature selection. IEEE Trans Knowl Data Eng 26(9):2138–2150

    Article  Google Scholar 

  19. Mandal B, Jiang X, Eng HL, Kot A (2010) Prediction of eigenvalues and regularization of eigenfeatures for human face verification. Pattern Recogn Lett 31(8):717–724

    Article  Google Scholar 

  20. Qian JJ, Yang J, Xu Y (2013) Local structure-based image decomposition for feature extraction with applications to face recognition. IEEE Trans Image Process 22(9):3591–3603

    Article  Google Scholar 

  21. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  22. Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J Mach Learn Res 8(1):1027–1061

    MATH  Google Scholar 

  23. Tenenbaum JB, Silva VD, Langford JC (2001) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  24. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  25. Yan SC, Xu D, Zhang BY (2007) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40–51

    Article  Google Scholar 

  26. Z. J. Yang, C. C. Liu, P. Huang (2013) Maximum margin learning projections for face recognition. In Proc of international Conf On computational intelligence and design, 8:116–119

  27. Ye J, Janardan R, Park CH, Park H (2004) An optimization criterion for generalized discriminant analysis on undersampled problems. IEEE Trans Pattern Anal Mach Intell 26(8):982–994

    Article  Google Scholar 

  28. Ye JP, Li Q, Xiong H (2005) IDR/QR: an incremental dimension reduction algorithm via QR decomposition. IEEE Trans Knowl Data Eng 17(9):1208–1222

    Article  Google Scholar 

  29. Yu WW (2006) Two-dimensional discriminant locality preserving projections for face recognition. Image Vis Comput 24(3):239–248

    Article  Google Scholar 

  30. Zhang HG, Deng WH, Guo J (2010) Locality preserving and global discriminant projection with prior information. Mach Vis Appl 21(4):577–585

    Article  Google Scholar 

  31. Zhao HT, Sun SY, Jing ZL (2006) Local structure based supervised feature extraction. Pattern Recogn 39(8):1546–1550

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by China Postdoctoral Science Foundation funded project (Grant Nos. 2017 M611656), the National Natural Science Fund of China (Grant Nos. 61502206,61503195, 61462064, 61203243, 61603192, 61402231), the Natural Science Fund of Jiangsu Province (Grant No. BK20150523 and BK20161580), the University Natural Science Fund of Jiangsu Province of China (Grant No. 16KJB520020), the Project supported by the Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology) (Grant No. 30916014107), and 2011 Collaborative Innovation Center of Internet of Things Technology and Intelligent Systems(Minjiang University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangjing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Huang, P., Wan, M. et al. Discriminant maximum margin projections for face recognition. Multimed Tools Appl 78, 23847–23865 (2019). https://doi.org/10.1007/s11042-018-6242-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6242-8

Keywords

Navigation