Skip to main content

Advertisement

Log in

Breast cancer detection in mammography using spatial diversity, geostatistics, and concave geometry

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Breast cancer is a global health problem which mainly affects the female population. It is known that early detection increases the chances of effective treatment, improving the disease prognosis. It remains a challenge to detect the lesion with high detection rate and ensure, at the same time, low rates of false positives . Aiming this objective, this work proposes an efficient method for detection of mass regions on digitized mammograms though diversity analysis, geostatistical and concave geometry (Alpha Shapes). We evaluate the detection rate for each feature extraction using Support Vector Machine in MIAS and DDSM database, with 74 and 621 mammograms, respectively, all containing at least one mass region. The obtained results are promising, reaching 97.30% of detection rate and 0.89 false positive per image for MIAS database and also 91.63% of detection rate and 0.86 false positive per image for DDSM database. Specifically, in DDSM obtaining high detection rate and low rate of false positives when using concave geometry to extract features in a large database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. American Cancer Society A (2013) Learn about breast cancer

  2. Anitha J, Peter JD, Pandian SIA (2017) A dual stage adaptive thresholding (dusat) for automatic mass detection in mammograms. Comput Methods Programs Biomed 138:93–104

    Article  Google Scholar 

  3. Anselin L (2001) Computing enviroments for spatial data analysis. J Geogr Syst 2:201–220

    Article  Google Scholar 

  4. Basheer NM, Mohammed MH (2013) Segmentation of breast masses in digital mammograms using adaptive median filtering and texture analysis. Int J Recent Technol Eng(IJRTE) 2(1):39–43

    MathSciNet  Google Scholar 

  5. Bird R, Wallace T, Yankaskas B (1992) Analysis of cancers missed at screening mammography. Radiology 184(3):613–617

    Article  Google Scholar 

  6. Braz JG, de Paiva CA, Corrêa Silva A, Cesar Muniz de Oliveira A (2009) Classification of breast tissues using moran’s index and geary’s coefficient as texture signatures and svm. Comput Biol Med 39(12):1063–1072

    Article  Google Scholar 

  7. Braz JG, da Rocha SV, Gattass M, Silva AC, de Paiva AC (2013) A mass classification using spatial diversity approaches in mammography images for false positive reduction. Expert Syst Appl 40(18):7534–7543

    Article  Google Scholar 

  8. Buzas M, Hayek L (1998) She analysis for biofacies identification. J Foraminiferal Res 28(3):233–239

    Google Scholar 

  9. Camargo J (1993) Must dominance increase with the number of subordinate species in competitive interactions. J Theor Biol 161(4):537–542

    Article  Google Scholar 

  10. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 1(6):679–698

    Article  Google Scholar 

  11. Cheng Y (1995) Mean shift, mode seeking, and clustering. IEEE Trans Pattern Anal Mach Intell 17(8):790–799

    Article  Google Scholar 

  12. Dhungel N, Carneiro G, Bradley AP (2015) Automated mass detection in mammograms using cascaded deep learning and random forests. In: 2015 International Conference on digital image computing: techniques and applications (DICTA). IEEE, pp 1–8

  13. Ding J, Kuo C, Hong W (2009) An efficient image segmentation technique by fast scanning and adaptive merging. Graphical Models and Image Processing

  14. Gao X, Wang Y, Li X, Tao D (2010) On combining morphological component analysis and concentric morphology model for mammographic mass detection. IEEE Trans Inform Technol Biomed 14(2):266–273

    Article  Google Scholar 

  15. Gonzalez R, Woods R (2010) Processamento Digital de Imagens, 3rd edn. Pearson Prentice Hall, São Paulo

    Google Scholar 

  16. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 1(6):610–621

    Article  Google Scholar 

  17. Heath M, Bowyer KDK (1998) Current status of the digital database for screening mammography. Digit Mammograph 1:457–460

    Article  Google Scholar 

  18. Hong BW, Sohn BS (2010) Segmentation of regions of interest in mammograms in a topographic approach. IEEE Trans Inform Technol Biomed 14(1):129–139

    Article  Google Scholar 

  19. Jost L (2010) The relation between evenness and diversity. Diversity 2(2):207–232

    Article  Google Scholar 

  20. Kashyap KL, Bajpai MK, Khanna P (2017) An efficient algorithm for mass detection and shape analysis of different masses present in digital mammograms. Multimed Tools Appl, 1–21

  21. Ke L, Mu N, Kang Y (2010) Mass computer-aided diagnosis method in mammogram based on texture features. In: 3rd International conference on biomedical engineering and informatics (BMEI), vol 1. IEEE, Yantai, pp 354–357

  22. Levine N (1996) Análise Estatística de Dados Geográficos Editora Unsep. São Paulo, Brasil

    Google Scholar 

  23. Liu X, Xu X, Liu J, Feng Z (2011) A new automatic method for mass detection in mammography with false positives reduction by supported vector machine. In: 4th International Conference on biomedical engineering and informatics, vol 1. IEEE, Shangai, pp 33–37, DOI https://doi.org/10.1109/BMEI.2011.6098328

  24. Lladó X, Oliver A, Freixenet J, Martí R, Martí J (2009) A textural approach for mass false positive reduction in mammography. Comput Med Imag Graph 33(6):415–422

    Article  Google Scholar 

  25. MacQueen J et al. (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol 14. University of California Berkeley, California, pp 281–297

  26. Magurran AE (2004) Measuring biological diversity. Taylor & Francis

  27. May R (1975) Patterns of species abundance and diversity. Ecol Evol Commun, 81–120

  28. Moayedi F, Azimifar Z, Boostani R, Katebi S (2010) Contourlet-based mammography mass classification using the svm family. Comput Biol Med 40(4):373–383

    Article  Google Scholar 

  29. Montero RS, Bribiesca E (2009) State of the art of compactness and circularity measures. Int Math Forum 4(25–28):1305–1335

    MathSciNet  MATH  Google Scholar 

  30. Mucke HE (1994) Three-dimensional alpha shapes. ACM Trans Graph 13:43–72

    Article  MATH  Google Scholar 

  31. Obenauer S (2008) Bi-rads, lexicon. In: Encyclopedia of diagnostic imaging. Springer, pp 131–134

  32. Oliver A, Lladó X, Freixenet J, Martí R, Pérez E, Pont J, Zwiggelaar R (2010) Influence of using manual or automatic breast density information in a mass detection cad system. Acad Radiol 17(7):877–883

    Article  Google Scholar 

  33. Pielou E (1975) Ecological diversity. Wiley, New York

    Google Scholar 

  34. Pizer SM (1987) Adaptive histogram equalization and its variotions. Comput Vis Graph Image Process, 355–368

  35. Rahmati P, Adler A, Hamarneh G (2012) Mammography segmentation with maximum likelihood active contours. Medical Image Analysis

  36. Ramos R, Nascimento M, Pereira D (2012) Texture extraction: an evaluation of ridgelet, wavelet and co-occurrence based methods applied to mammograms. Expert Systems with Applications

  37. Ripley BD (1977) Modelling spatial patterns. J Roy Statist Soc, 172–212

  38. Sahba F, Venetsanopoulos A (2010) Mean shift based algorithm for mammographic breast mass detection. In: 17th IEEE International conference on image processing (ICIP). IEEE, Hong Kong, pp 3629–3632

  39. Sai Deepak K, Kartheek Medathati N, Sivaswamy J (2012) Detection and discrimination of disease related abnormalities based on learning normal cases. Pattern Recogn 45:3707–3716

    Article  Google Scholar 

  40. Sampaio W, Diniz EM, Silva AC, Paiva AC, Gatass M (2011) Detection of masses in mammogram images using cnn, geostatistic functions and svm. Comput Biol Med 41:653–664

    Article  Google Scholar 

  41. Shannon C (2001) A mathematical theory of communication. ACM SIGMOBILE Mob Comput Commun Rev 5(1):3–55

    Article  MathSciNet  Google Scholar 

  42. Silva Neto OP, Silva AC, Paiva AC, Gattass M (2017) Automatic mass detection in mammography images using particle swarm optimization and functional diversity indexes. Multimed Tools Appl, 1–27

  43. Simpson E (1949) Measurement of diversity. Nature; Nature

  44. Sousa J R F d S, Silva AC, de Paiva AC, Nunes RA (2010) Methodology for automatic detection of lung nodules in computerized tomography images computer methods and programs. Biomedicine 98(1): 1–14

    Google Scholar 

  45. Suckling J, Parker J, Dance D, Astley S, Hutt I, Boggis C, Ricketts I, Stamatakis E, Cerneaz N, Kok S et al (1994) The mammographic images analysis society digital mammogram database. Exerpta Medica Int Congress Series 1069:375–378

    Google Scholar 

  46. Tai SC, Chen ZS, Tsai WT (2014) An automatic mass detection system in mammograms based on complex texture features. IEEE J Biomed Health Inf 18 (2):618–627

    Article  Google Scholar 

  47. Terada T, Fukumizu Y, Yamauchi H, Chou H, Kurumi Y (2010) Detecting mass and its region in mammograms using mean shift segmentation and iris filter. In: International Symposium on communications and information technologies (ISCIT). IEEE, Tokyo, pp 1176–1179

  48. Tzikopoulos S, Mavroforakis M, Georgiou H, Dimitropoulos N, Theodoridis S (2011) A fully automated scheme for mammographic segmentation and classification based on breast density and asymmetry. Comput Methods Programs Biomed 102 (1):47–63

    Article  Google Scholar 

  49. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  50. Vikhe P, Thool V (2016) Mass detection in mammographic images using wavelet processing and adaptive threshold technique. J Med Syst 40(4):82

    Article  Google Scholar 

  51. Wang X, Li L, Xu W, Liu W, Lederman D, Zheng B (2012) Improving performance of computer-aided detection of masses by incorporating bilateral mammographic density asymmetry: an assessment. Acad Radiol 19(3):303–310

    Article  Google Scholar 

  52. Wei J, Chan H, Zhou C, Wu Y, Sahiner B, Hadjiiski L, Roubidoux M, Helvie M (2011) Computer-aided detection of breast masses: four-view strategy for screening mammography. Med Phys 38(4):1867– 1876

    Article  Google Scholar 

  53. Wei J, Chan HP, Zhou C, Wu YT, Sahiner B, Hadjiiski LM, Roubidoux MA, Helvie MA (2011) Computer-aided detection of breast masses: four-view strategy for screening mammography. Med Phys 38:1867

    Article  Google Scholar 

  54. Zheng Y (2010) Breast cancer detection with gabor features from digital mammograms. Algorithms 3:44–62

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq and FAPEMA for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo Braz Junior.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braz Junior, G., da Rocha, S.V., de Almeida, J.D.S. et al. Breast cancer detection in mammography using spatial diversity, geostatistics, and concave geometry. Multimed Tools Appl 78, 13005–13031 (2019). https://doi.org/10.1007/s11042-018-6259-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6259-z

Keywords

Navigation