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Abstract Massive amount of multimedia data that contain times- tamps and
geographical information are being generated at an unprecedented scale in
many emerging applications such as photo sharing web site and social net-
works applications. Due to their importance, a large body of work has focused
on efficiently computing various spatial image queries. In this paper,we study
the spatial temporal image query which considers three important constraints
during the search including time recency, spatial proximity and visual rele-
vance. A novel index structure, namely Hierarchical Information Quadtree(HI-
Quadtree), to efficiently insert/delete spatial temporal images with high arrive
rates. Base on HI-Quadtree an efficient algorithm is developed to support spa-
tial temporal image query. We show via extensive experimentation with real
spatial databases clearly demonstrate the efficiency of our methods.
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1 Introduction

Due to the rapid development of modern web services and popularization of
mobile smart devices, massive amount of multimedia data that contain both
text information and geographical location information are being generated at
an unprecedented scale. For instance, Facebook, the most popular social net-
works service, reports 350 million photos uploaded daily as of November 2013.
More than 400 million tweets containing texts and images have been generated
by 140 million Twitter users everyday. Tweets, each containing up to 140 char-
acters, can be associated with locations, which may be coordinates (latitude
and longitude) or semantic locations. Flickr, the largest photo sharing web
site, had a total of 87 million registered members and more than 3.5 million
new images uploaded daily in March 2013. 100 hours of video are uploaded
to YouTube every minute, resulting in more than 2 billion videos totally by
the end of 2013. Other social networks applications such as WeChat, Instgram,
Weibo, Pinterest, generate vast amount of multimedia data day by day and are
shared over the world. Mobile smart devices, such as smartphone, tablet and
smart watch which are equiped with GPS module and wireless communication
module, can take photos, make videos or post messages to social platforms.
These multimedia data generally contain timestamps and geographical infor-
mation. For another example, check-ins or reviews in location based social
networks (e.g., Foursquare) contain both text descriptions and locations of
points of interest (POIs). The emergence of massive multimedia lead to the
new requirement such as temporal spatial multimedia data searching.

Top-k temporal spatial image queries are intuitive and constitute a useful
tool for many applications. It aims to find temporal spatial image objects that
attend the three criteria simultaneously: they are similar or relevant in the as-
pect of visual content, they are inside the spatial area of interest and they are
inside the query time constraints. Fig illustrates the spatial temporal images
in a three dimension space: longitude x, latitude y and time t. However, pro-
cessing top-k temporal spatial image queries efficiently is complex and requires
a hybrid index combining information retrieval and spatial indexes. Besides,
It is costly and involves accessing a huge amount of temporal geo-tagged mul-
timedia data before finding the result set. To the best of our knowledge, we
are the first to study this important issue and the previous works Focused
on top-k spatial image search without temporal information. The state-of-the-
art approaches proposed by Alfarrarjeh et al. [1] employ a hybrid index that
evaluate both spatial and visual features in tandem.

Challenges. There are two key challenges in efficiently processing spatial
temporal image queries over spatial temporal multimedia streams. Firstly, a
massive number of geo-temporal images, typically in the order of millions,
are posted in many applications, and hence even a small increase in efficiency
results in significant savings. Secondly, the streaming geo-temporal images
may continuously arrive in a rapid rate which also calls for high throughput
performance for better user satisfaction.
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Based on the above challenges, we propose a novel index technique, Hier-
archical Information Quadtree(HI-Quadtree for short), to effectively organize
continuous spatial temporal multimedia streams. In a nutshell, HI-Quadtree
consists of two parts temporal segment and inverted quadtree. temporal seg-
ment makes sure that the newly incoming spatial temporal images are always
inserted in the most recent segment, and provides timely answers to spatial
temporal image queries. The inverted quadtree is essentially an quadtree, each
node of which is enriched with reference to an inverted file for the images con-
tained in the sub-tree rooted at the node. Through inverted quadtree, we takes
spatial and visual dimensions into consideration synchronously during query
processing. Extensive experiments show that our HI-Quadtree based spatial
temporal image search algorithm achieves very substantial improvements over
the nature extensions of existing techniques due to strong filtering power.

Contributions. The principle contributions of this paper are summarized
as follows.

– We formulate the problem of spatial temporal image query and identify its
applications.

– To facilitate the spatial temporal image search, we propose a novel index-
ing structure namely HI-Quadtree to effectively organize spatial temporal
images.

– Based on HI-Quadtree, we develop an efficient spatial temporal image
search algorithm.

– Comprehensive experiments show that our new matching algorithm achieves
substantial improvements (up to three to five times speed up) over the na-
ture extensions of state-of-the-art techniques.

Roadmap. The rest of this paper is organized as follows. Section 1.1 intro-
duces the related work. Section 2 first gives an overview of architecture of
spatial temporal image search system, then formally defines the problem of
spatial temporal image search. Baseline technique are presented in Section 3.
We introduce the techniques should be adopted in Section 4. Extensive exper-
iments are reported in Section 5. Section 6 concludes the paper.

1.1 Related Work

In this section, we review the techniques of top-k spatial keywords query,
temporal spatial keywords query and content-based image retrieval, which are
related to our work.
Top-k Spatial Keywords Query. Spatial keywords query is a hot issue at-
tracting a lot of researchers in the community of database and information
retrieval. A spatial keyword query takes a user location and user-supplied key-
words as arguments and returns web objects that are spatially and textually
relevant to these arguments [7]. Many efficient indexing techniques have been
proposed such as R-tree [13], R∗-tree [5], IR [9]. For top-k spatial keyword
query problem, Joao B. Rocha-Junior [25] et al. propose a novel index called
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Spatial Inverted Index (S2I) which maps each distinct term to a set of ob-
jects containing the term. Based on S2I, they designed efficient algorithms
named SKA and MKA to improve the performance of top-k spatial keyword
queries. Li et al. [18] proposed IR-tree that together with a top-k document
search algorithm facilitates four major tasks in document searches. Zhang et
al. [57] proposed a scalable integrated inverted index named I3 which adopts
the Quadtree structure to hierarchically partition the data space into cells.
Besides, they presented a new storage mechanism for efficient retrieval of key-
word cell and preserve additional summary information to facilitate pruning.
In their other works [56], they proposed an effective approach to address the
top-k distance-sensitive spatial keyword query by modeling it as the well-
known top-k aggregation problem. Moreover, a novel and efficient approach
named Rank-aware CA (RCA) algorithm is designed by them to improve the
effectiveness of pruning. Zheng et al. [59] studied interactive top-k spatial key-
word (ITkSK) query and desinged a three-phase solution focusing on both
effectiveness and efficiency. In order to solve the problem of top k spatial key-
word search (TOPK-SK) efficiently, Zhang et al. [55] proposed a novel index
structure called inverted linear quadtree (IL-Quadtree) which is designed to
utilize both spatial and keyword based pruning techniques to effectively reduce
the search space.

Joo B. Rocha-Junior et al. [26] solved the problem of processing top-k
spatial keyword queries on road networks for the first time. In this type of
problem, the distance between the query location and the spatial object is the
shortest path, rather than Euclidean distance. They presented novel indexing
structures and algorithms that are able to process such queries efficiently. Guo
et al. [12] studied continuous top-k spatial keyword queries on road networks
for the first time. They presented two methods that can monitor such moving
queries in an incremental manner and reduce repetitive traversing of network
edges for better performance.

The approaches above-mentioned is to search spatial objects with spatial
information and keywords. However, they are not adequately suitable to solve
the problem of top-k temporal spatial image search.

Temporal Spatial Keywords Query. The aforementioned approaches con-
sider only the spatial information and textual content of objects. However,
temporal information is another significant dimension which should be consid-
ered in the processing of query. Temporal spatial keywords query is another
important problem concerned by many researchers in recent years. Mehta et
al. [23] proposed a novel type of spatial-temporal-keyword query named kCD-
STK query which combines keyword search with the task of maximizing the
spatio-temporal coverage and diversity of the returned top-k results. Further-
more, an efficient approach which utilizes a hybrid spatial-temporal-keyword
index is introduced by them to substantially improve the efficiency of query.
Nepomnyachiy et al. [24] introduced a search framework named 3W for geo-
temporal stamped documents. Their system can efficiently processes multi-
dimensional queries over text, space, and time. Chen et al. [8] consider the
temporal spatial-keyword top-k Subscription (TaSK) query. The TaSK query
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takes into account three aspects of objects: text relevance, spatial proximity
and recency. They introduced a new concept Conditional Influence Region
(CIR) to represent the TaSK query and proposed an algorithm for making
use of the filtering conditions (of each group of queries on each spatial cell) to
efficiently address the problem of TaSK. However, these approaches mentioned
are just suitable to textual query, rather than image retrieval.

Content-Based Image Retrieval. Recently, Content-based image retrieval
(CBIR for short) [16,17,33,34,35,36] is widely noted in multimedia commu-
nity, which is one of the fundamental research challenges. CBIR aims to search
for images through analyzing their visual contents, and thus image represen-
tation [30,37,50,52,32,40,51,31,38,44,49]. Local feature representations such
as the bag-of-visual-words (BoVW) models [27,42,45] applying local feature
descriptors such as SIFT [20,21,47] and SURF [4,48]. BoVWs represents an
image by a vector of visual words which is constructed by vector quantiza-
tion of feature descriptors [28]. Many researches worked for this issue over the
years. For example, Irtaza et al. [15] proposed a neural network based architec-
ture for content based image retrieval. In order to improve the capabilities of
their approach, they designed an efficient feature extraction algorithm based
on the concept of in-depth texture analysis. Bunte et al. [6] used two differ-
ent methods to learn favorable feature representations Limited Rank Matrix
Learning Vector Quantization (LiRaMLVQ) and Large Margin Nearest Neigh-
bor (LMNN). Zhao et al. [58] studied affective image retrieval and the perfor-
mance of different features on different kinds of images. Xie et al. [53] presented
a hypergraph-based framework integrating image content, user-generated tags
and geo-location information into image ranking problem. Zhu et al. studied
the problem of content-based landmark image search and proposed multimodal
hypergraph (MMHG) to characterize the complex associations between land-
mark images. Based on it, they designed a novel content-based visual landmark
search system to facilitate effective image search. However, these methods do
not consider the temporal information and geographical proximity of images.
Thus they are not suitable to the problem of temporal spatial image search.

2 System Overview

This section first gives an overview of architecture of spatial temporal im-
age search system, then introduces the problem definition of spatial temporal
image search.

2.1 System Architecture

The proposed spatial temporal image search system consists of three compo-
nents, namely, preprocess, update, and query modules, as what is showed in
Figure 1.
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(a)

Fig. 1: Spatial temporal image system architecture

Preprocess Module. This module used to receive the incoming spatial
temporal image, extracts the location of each geo-temporal image, and for-
wards each geo-temporal image along with its extracted location to the up-
date module with the form: (id, location, timestamp, visual word list)which
describes the geo-temporal image’s identifier, geo-location, issuing time, and
image contents. Location is either a precise latitude and longitude coordi-
nates or the center of a Minimum Bounding Rectangle. This module will not
be further discussed in the following sections, because we directly use exist-
ing preprocessing programme to extract the location information from public
datasets.

Update Module. The update module ensures all incoming spatial tem-
poral image can be inserted to in-memory indexes as soon as possible, and all
incoming spatial temporal image queries can be answered accurately from the
in-memory indexes with minimum possible memory consumption. This is done
through two main tasks: (1) Inserting newly coming spatial temporal image
into the latest in-memory index structure; (2) Deleting expire spatial temporal
image from the most forward in-memory index structure without sacrificing
the query answer quality

Query Module. Given a spatial temporal image search query, the query
module employs spatio-temporal vusial pruning techniques that reduce the
number of visited images to return the final answer. As the query module just
retrieves the images in the index, the accuracy of result is mainly decided by
the decisions taken at the update module on which spatial temporal image
will expire from the in-memory index.
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Notation Definition

I(q) s geo-temporal image (query)
I.ψ(q.ψ) a set of visual words used to describe I (query q)
I.loc(q.loc) location of the image I (query q)
I.t(q.t) timestamp of the image I (query q)
V vocabulary
v a visual word in V
l the number of query visual word in q.ψ
k the number of results should be returned
ω1 the preference parameter to balance the spatial proxim-

ity, visual relevance and temporal recency
ω2 the preference parameter to balance the spatial proxim-

ity, visual relevance and temporal recency
ω3 the preference parameter to balance the spatial proxim-

ity, visual relevance and temporal recency
fs(I, q) the spatial proximity between I.loc and q.loc
fv(I, q) the temporal recency between I.ψ and q.ψ
ft(I, q) the visual relevance between I.t and q.t
fstv(I, q) the spatial temporal visual ranking score between I and

q

Table 1: Notations

2.2 Problem Statement

In this section, we present problem definition and necessary preliminaries of top
k spatial temporal image search. Table 1 below summarizes the mathematical
notations used throughout this section.

In this section, O denotes a sequence of incoming stream geo-temporal
images. A geo-temporal image is an image message with geo-location and
timestamp, such as geo-temporal photos in Flickr. Formally, a geo-temporal
image is modeled as I = < ψ, loc, tc >, where o.ψ denotes a set of distinct
visual words from a visual vocabulary set V , I.loc represents a geo-location
with latitude and longitude, and I.t represented the creation timestamp of the
image.

Definition 1 (Top-k Spatial Temporal Image Query) A top-k spatial
temporal image query q is defined as q = < ψ, loc, t, k >, where q.ψ is a
set of distinct visual words extracted from query image, q.loc is the query
location, q.t is the user submitted timestamp, k is the number of the result
user expected.

Definition 2 (Spatial Proximity fs(q, I)) Let δmax denote the maximal
distance in the space, the spatial relevance between the query q and the image

I, denoted by fs(q, I), is defined as δ(q.loc,I.loc)
δmax

.

Similar to [9], we adopt the language model based function to measure the
visual words’ relevance of the image regarding the query q, which is defined
as follows.
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Definition 3 (Visual Relevance fv(q, I)) Let wt,I denote the weight of the
visual word v regarding image I, and

wv,I = (1− ξ)
tfv,I
|I.ψ|

+ ξ
tfv,I
|I|

, (1)

where tfv,I and tfv,I are the term frequency of v in I.ψ and I respectively.
Here, I represents the visual word information of all images in the whole
dataset and ξ is a smoothing parameter. Then the visual relevance between q
and I is defined as follows.

ft(q, I) = 1−

∏
v∈q.ψ wv,I

γmax
(2)

where γmax is used for normalization.

Definition 4 (Temporal Recency ft(q, I)) The temporal recency between
the query q and the image i, denoted by ft(q, I), is calculated by the following
exponential decay function:

ft(q, I) = D−(q.t−I.tc). (3)

where D is base number that determines the rate of the recency decay. The
function is monotonically decreasing with q.t−I.tc. It is introduced in [22] and
is applied (e.g., [2]) as the measurement of recency for stream data. Based on
the experimental studies [10], the exponential decay function has been shown
to be effective in blending the recency and text relevancy of objects. Thus, we
use the exponential decay function to blend the recency and visual relevancy
of image.

Based on the spatial proximity, visual relevance and temporal recency
between the query and the spatial temporal image, the Spatial-temporal
Ranking Score of an image I regarding the query q can be defined as fol-
lows.

Definition 5 (Spatial Temporal Visual Score f(q, I)) Let ω1, ω2, ω3 be
the preference parameter specifying the trade-off among the spatial proximity,
visual relevance and temporal recency, ω1+ω2+ω3 = 1 and ω1, ω2, ω3 > 0 we
have

f(q, I) = ω1 ∗ fs(q, I) + ω2 ∗ fv(q, I) + ω3 ∗ ft(q, I). (4)

Note that the images with the small score values are preferred (i,e., ranked
higher).

Definition 6 (Spatial Temporal Image Search) Given a set of geo-textual
Image I and a spatial temporal image query q, we aim to find the top k geo-
temporal images with smallest spatial temporal visual Score score.



Title Suppressed Due to Excessive Length 9

In addition, we require that only images I with fv(q, I) > 0 can be returned
as query results, so as to avoid giving completely irrelevant answers to users
queries. This implies that I and q should have at least one common term.

In the section hereafter, we abbreviate the geo-temporal image and the
geo-temporal query as image and query respectively, if there is no ambiguity.
We assume there is a total order for visual words in V , and the words in each
query and image are sorted accordingly.

3 Baseline

Before proceeding to present the proposed solution, we discuss the possibility
of using conventional techniques for the processing of spatial temporal image
queries. In the following, we develop two baselines by utilizing existing tech-
niques: Inverted File Append (IFA for short) and Spatial Temporal Visual
Inverted Index(STV2I).

3.1 Inverted File Append

A nice property of the inverted indexing structure is that, for a given query
q, only the objects containing at least one query keyword will be involved
in the search. Thus, inverted file is widely used to process textual queries
efficiently[14].

To adopt inverted file for spatial temporal image search, the simplest ap-
proach is to treat each geo-temporal image as a document, and sort the entries
in each posting list in ascending order of the corresponding geo-temporal im-
ages timestamps. This approach is highly efficient in terms of geo-temporal
image insertions, as new geo-temporal image can be easily appended to the
ends of posting lists without affecting the ordering of entries. In terms of query
efficiency, however, the aforementioned approach faces a great challenge. This
is because our spatial temporal visual ranking score f(q, I) evaluates a geo-
temporal image I based on three factors: its spatial proximity fs(q, I), visual
relevance fv(q, I), and temporal recency ft(q, I). If the entries in a posting list
are sorted in ascending order of timestamps, the corresponding geo-temporal
image would be in ascending order of temporal recency, regardless of their
spatial proximity or visual relevance. In other words, the entry order does not
provide any hint on the overall score of each geo-temporal image. As a con-
sequence, when answering a query q, we have to examine most of entries in
all posting lists relevant to q, since the omission of any entry may render the
query results incomplete.

3.2 Spatial Temporal Visual Inverted Index

To the best of our knowledge, there is no index in the literature that can filter
objects taking into account the three criteria: spatial, temporal and visual.
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Thus, in this section, we present an hybrid index, namely spatial temporal
visual inverted index(STV2I), which may filter geo-temporal images taking
into account the spatial, temporal and visual information simultaneously.

The STV2I is similar to traditional spatial keyword search index S2I. The
major difference is how to use the spatial index. S2I uses a R-tree to select
objects that are spatially relevant, but STV2I employs a 3D-Rtree [29], which
takes spatial and temporal dimensions into consideration synchronously.

Obviously, the 3D-Rtree can filter geo-temporal that are spatially and tem-
porally unrelated in the early phase of the query processing. Unfortunately, it
may meets poor performance in some situation. The minimum bounding re-
gions of 3D-Rtree are 3D rectangles, because the geo-temporal images stored
in 3D-Rtree has three dimensions: time, latitude, and longitude. Meanwhile,
space and time are not correlated dimensions. Thus, the minimum bounding
regions of 3D-Rtree may cover large areas of the space, which may result in
large area overlap. In this scenario, long periods of time or large spatial regions
may give rise to poor performance.

4 Spatial Temporal Visual Indexing

Due to massive amount of spatial temporal images and queries are being gener-
ated at an unprecedented scale, three main objectives have to be satisfy in our
spatial temporal visual indexing. First, the proposed index has to be able to
handle high arrival rates of incoming spatial temporal images. Second,expired
objects can be deleted from its index with the approximative rate as insertion.
Third, a large number of unpromising spatial temporal images can be filtered
at a cheap cost.

4.1 Our proposed: Hierarchical Information Quadtree

Based on the above requirement, in this sub-section, we present a Hierarchical
Information Quadtree (HI-Quadtree for short) that supports update at high
arrive rate and provides the following required functions for spatial temporal
image search and ranking: I)temporal filtering: all the temporally irrelevant
trees, nodes and images have to be accessed as late as possible to follow the
chronological order; II)spatial filtering: all the spatially irrelevant nodes have
to be filtered out as early as possible to shrink the search space; III)visual
word filtering: all the visually irrelevant trees, nodes and images have to be
discarded as early as possible to cut down the search cost; and IV)relevance
computation and ranking: since only the top-k images are returned and k
is expected to be much smaller than the total number of similar images, it is
desirable to have an incremental search process that integrates the computa-
tion of the joint relevance, and image ranking seamlessly so that the search
process can stop as soon as the top-k images are identified. Figure 2 shows
two levels of HI-Quadtree, namely, temporal segment and inverted quadtree.
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(a)

Fig. 2: Example of hierarchical information quadtree

Temporal Segment

To achieve fast insertion and deletion, all spatial temporal images are tem-
porally partitioned into successive disjoint index segments. For example, each
segment only indexes the data of T hours. Thus, it makes sure that the newly
incoming spatial temporal images are always inserted in the most recent seg-
ment. Once the segment spans T hours of data, the segment is terminated and
a new empty segment is generated to insert the new spatial temporal image.

Inverted Quadtree

To support high arrival rates of incoming objects, space-partitioning index
(e.g., Quadtree [11,39,41,54,55,14], and Pyramid [3,43,46,19]) is more famous
than object-partitioning index (e.g., R-tree). As space-partitioning index is
more suitable to high update system because of its disjoint space decomposi-
tion policy, while the shape of object-partitioning index is highly affected by
the rate and order of incoming data, which may trigger a large number of node
splitting and merging. Meanwhile, inverted file, which is the most efficient in-
dex for text information retrieval, can easily extend to visual words. Thus, we
propose a hybrid indexing structure, namely inverted quadtree, that utilizes
both indexing structures in a combined fashion.

The inverted quadtree is essentially an quadtree, each node of which is
enriched with reference to an inverted file for the images contained in the
sub-tree rooted at the node. In particular, each node of an inverted quadtree
contains all spatial, temporal, and visual words information; the first is in the
form of a rectangle, the second is in the form of timestamp, and the last is in
the form of an inverted file.

More formally, the leaf node of Inverted Quadtree has the form (I, r, t).
where I refers to a set of images belonged to current node, r is the area covered
by current node, and t is the latest timestamp aggregated from the images. A
leaf node also contains a pointer to a visual inverted file for the visual words
of the images being indexed.

An visual inverted file consists of a vocabulary for all distinct visual words
in a collection of images and a set of posting lists related to this vocabulary.
Each posting list is a sequence of visual pairs < ip, wI,v >, where ip refers to
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a image containing visual words v, and wI,v is the weight of term v in image
I.

An inner node contains a number of entries of the form (cp, r, t). cp are
the address of the children nodes, r is the area covered by current node, and t
is the latest timestamp aggregated from its children nodes. A inner node also
contains a pointer to a visual inverted file which is aggregated from the visual
inverted files from its child node. This inverted file includes all images in the
entries of current node, enabling us to estimate a bound of the visual relevancy
to a query of all images contained in the subtree rooted at current node. The
weight of each visual word v in the inverted index is the maximum weight of
the visual word in the images contained in the subtree rooted at current node.
Fig depicts an Inverted Quadtree indexing structure.

4.2 Processing of Spatial Temporal Image Queries

Algorithm 1 Spatial Temporal Image Search(q, k, I)

Input: q : the spatial temporal image query, k : the number of image return, I : current
HI-Quadtree index

Output: R : top-k query result results
1: R := ∅; H = ∅, λmax =∞
2: H ← new a min first heap
3: build frequency signature for query
4: H.Enqueue(I.root,MINDst(q, I.root))
5: while H 6= ∅ do
6: e← the node popped from H
7: if e is a leaf node then
8: for each image I in node e do
9: if fstv(q, I) ≤ λmax then
10: λmax ← fstv(q, I)
11: update R by (I, fstv(q, I))
12: end if
13: end for
14: else
15: for each child e′ in node e do
16: if MINDstv(q, e′) ≤ λmax then
17: H.Enqueue(e′,MINDstv(q, e′))
18: end if
19: end for
20: end if
21: process the root node of next HI-Quadtree
22: end while
23: return R

We proceed to present an important metric, the minimum spatial temporal
visual score MINDstv, which will be used in the query processing. Given a
query q and a node N in the HI-Quadtree, the metric MINDstv offers a lower
bound on the actual spatial temporal visual score between query q and the
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images enclosed in the rectangle of node N . This bound can be used to order
and efficiently prune the paths of the search space in the HI-Quadtree.

Definition 7 (MINDstv(q,N)) The score of a query point q from a node N
in the HI-Quadtree, denoted as MINDstv(q,N), is defined as follows:

MINDstv(q,N) = ω1 ∗MINDs(q,N)+

ω2 ∗MINDv(q,N) + ω3 ∗MINDt(q,N)
(5)

where ω1, ω2, and ω3are the same as in Equation 4;MINDs(q,N) is the mini-
mum Euclidian distance between q.loc andN.r,MINDv(q,N) is the minimum
visual relevance between q.ψ and N.ψ, MINDt(q,N) is the minimum time
recency between q.t and N.t.

A salient feature of the proposed HI-Quadtree structure is that it inherits
the nice properties of the Quadtree for query processing.

Theorem 1 Given a query point q, a node N , and a set of geo-temporal im-

ages I in node N , for any I ∈ I, we have fstv(q,N) ≤ DISTstv(q, I).

Proof Since geo-temporal image I is enclosed in the rectangle of node N ,
the minimum Euclidian distance between q.loc and N.r is no larger than the
Euclidian distance between q.loc and I.loc:

MISDs(q.loc,N.r) ≤ fs(q.loc, I.loc)

For each timestamp t, N.t is the maximum value I.t of all the geo-temporal
images in node N . Hence:

MISDt(q.loc,N.r) ≤ ft(q.loc, o.loc)

For each visual word v, wN.v (the weight of the visual word in N , which is the
inverted file of node N) is the maximum value wI.v of all the geo-temporal
images in node N . Thus:

MISDv(q.ψ,N.ψ) ≤ ft(q.ψ, I.ψ)

According to Equation 4 and Equation 5, we obtain:

MINDstv(q,N) ≤ fst(q, I)

thus completing the proof.

When searching the HI-Quadtree for the k objects nearest to a query q,
one must decide at each visited node of the HI-Quadtree which entry to search
first. MetricMINDST offers an approximation of the spatial-temporal ranking
score to every entry in the node and, therefore, can be used to direct the
search. Note that only node satisfied the constraint of query keywords need to
be loaded into memory and compute MINDST .
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To process spatial temporal image queries with HI-Quadtree framework,
we exploit the best-first traversal algorithm for retrieving the top-k objects.
With the best-first traversal algorithm, a priority queue is used to keep track
of the nodes and objects that have yet to be visited. The values of fst and
MINDst are used as the keys of objects and nodes, respectively.

When deciding which node to visit next, the algorithm picks the node N
with the smallestMINDst(q,N) value in the set of all nodes that have yet to
be visited. The algorithm terminates when k nearest objects (ranked according
to Equation 4) have been found.

Algorithm 1 illustrates the details of the HI-Quadtree based spatial tem-
poral image query. A minimum heap H is employed to keep the HI-Quadtree’s
nodes where the key of a node is its minimal spatial temporal visual rank-
ing score. For the input query, we calculate its frequency signature in Line 3.
In Line 4, we find out the root node of current time segment, calculate the
minimal spatial temporal visual ranking score for the root node, and then
pushed the root node into the H. The the algorithm executes the while loop
(Line 5-21)until the top-k results are ultimately reported in Line 23.

In each iteration, the top entry e with minimum spatial temporal vi-
sual ranking score is popped from H. When the popped node e is a leaf
node(Line 7), for each signature in node e, we will iterator extract the image
and check whether its spatial temporal visual score is less than λmax. If its
score is not larger than λmax, we push I into result set and add update λmax.
When the popped node e is a non-leaf node(Line 15), a child node e

′

of e will
be pushed to H if its minimal spatial temporal visual ranking score between e

′

and q, denoted by MINDstv(q, e
′

, is not larger than λmax (Line 15- 17). We
process the root node of next interval in Line 21. The algorithm terminates
when H is empty and the results are kept in R.

5 PERFORMANCE EVALUATION

In this section, we present the results of a comprehensive performance study
to evaluate the effectiveness and efficiency of our techniques proposed in this
paper.
Workload. A workload for this experiment consists of 100 input queries, and
the average query response time are employed to evaluate the performance of
the algorithms. The query locations are randomly selected from the underlying
dataset. By default, the number of query visual keywords varies from 10 to 200,
the number of results k grows from 10 to 100, and the preference parameter
ω changes from 0:1 to 0:9.

Experiments are run on a PC with Intel i7 7700K 4.20GHz CPU and
16GB RAM running Ubuntu 16.04 LTS Operation System. All algorithms in
the experiments are implemented in Java. For a fair comparison, we tune the
important parameters of the competitor algorithms for their best performance.
Particularly, the node capacity of all algorithms is set to 100. Our measures of
performance include insertion time, deletion time, storage overhead, number
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Table 2: Information of datasets

Datasets Number of Images Dist. Visual Words Number Avg. Visual Words Number
200K 200000 616347 124.7
400K 400000 613940 118.2
600K 600000 613026 114.3
800K 800000 607401 128.6
1M 1000000 612905 134.8

of node access and response time. The rest of this section evaluates index
maintenance and query processing.
Dataset. We first evaluate the scalability and performance of our system on
an image dataset of over one million images crawled from the photo-sharing
site, Flickr, using Oxford landmarks as queries. For the scalability and per-
formance evaluation, we randomly sampled five sub datasets whose sizes vary
from 100,000 to 2000,000 from the image dataset.

5.1 Index Maintenance

In this subsection, we evaluate the insertion time, deletion time, storage over-
head of all the algorithms.
Evaluation on insertion time. Fig. gives the performance when varying the
arrival rate from 200 to 3200. It is clearly that the average insertion time of
these three algorithm gradually grows with the increasing of arrival rate. Both
HIQ and IFA have a better performance than STVI, shown as Fig.(a). As IFA
adopts a simple data structure, the insertion need less time than HIQ. Fig.(b)
illustrates that the average insertion time of HIQ and STVI with varying node
capacity from 100 to 500. As HIQ has no node capacity, we just compare HIQ
and STVI. Apparently, the time cost of STVI is nearly 4 times of HIQ.
Evaluation on deletion time. Fig indicates that the average deletion time
of these three algorithm. With the rising of arrival rate from 200 to 3200, all of
them increase step by step. Like the situation of evaluation on insertion time,
the performance of IFA is the best due to its simple structure. the deletion
time of our method is less than STVI. We can find out from the Fig.(b) that
when varying the node capacity from 100 to 500, the performance of HIQ and
STVI wave slightly. The former fluctuate between 70 and 75, and the latter
As expected, HIQ has the best performance when node capacity changes.

5.2 Time Evaluation

In this subsection, we evaluate the query response time of all the algorithms.
Effect of the number of query visual words. To investigate the response
time of IFA, STVI and our HIQ algorithm under queries with different number
of visual words, we increase the number of visual query visual words l from
10 to 200. Fig.(a) evaluates the response time of these three methods where
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the number of query visual words varies from 10 to 200. Not surprisingly, all
of them increase gradually with the rising of l and the performance of HIQ is
the best. The time cost of HIQ and STVI grow faster than IFA when l < 100.
Effect of the number of returned results. We increase the number of
results k from 10 to 200 and evaluate the time cost of these three methods.
In Fig.(b), our methods HIQ shows superior performance in comparison with
other algorithms, which increases step by step with the growth of k. Clearly,
The trend of STVI is similar to HIQ. On the other hand, the response time of
IFA is almost unchanged.
Effect of dataset size. We study the response time under different sizes of
image datasets n. The experimental results are shown in Fig.(c). It is obvious
that with the increasing of n, the time cost of IFA, STVI and HIQ ascend by
degrees. When n > 600k, the climbing of them is slow down. Not surprisingly,
the performance of our method is the best of them.
Effect of weight ω. In the next experiment, we vary ω1 from 1/7 to 5/7,
setting ω2 = ω3 = (1−ω1)/2. Fig.(d) demonstrates the processing cost of each
method as a function of ω1. We can observe that the performance of these
three methods are practically unchanged in the interval 1/7 < ω1 < 5/7. Like
the evaluation above-mentioned, the performance of HIQ is the highest among
them. Fig.(e) illustrate the results of evaluation on varying ω2. We can see that
with the growth of ω2 all of the performance of these three algorithms slightly
slow down. In Fig.(f), the response time of HIQ and IFA gently decrease and
the performance of STVII is almost unchanged.

6 Conclusion

To the best of our knowledge, this is the first work to study the problem
of spatial temporal image queries over streaming spatial temporal multimedia
stream, which has a wide spectrum of application. To tackle with this problem,
we propose a novel spatial temporal visual indexing structure, namely HI-
Quadtree, efficiently organize a massive number of streaming spatial temporal
images such that each incoming query submitted by users can rapidly find out
the top-k results. An efficient spatial temporal image search algorithm based
on HI-Quadtree is designed to deal with this problem. Extensive experiments
demonstrate that our technique achieves a high throughput performance over
streaming spatial temporal multimedia data.
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