Skip to main content
Log in

Partial-copy detection of non-simulated videos using learning at decision level

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

There is a renewed tendency to improve video copy detection tasks due to the involved challenges in non-simulated applications. In an adverse real-world scenario, the volume of data to process as well as the variety of transformations to which a video is exposed increases continuously. Moreover, the interest in detecting not only long videos but also short partial copies increments the difficulties in copy detection methods. Therefore, we propose a practical copy detection method able to cope with partial-copies and useful in applications where real-time processing is required. To accomplish the desirable characteristics of high precision, fast processing and scalability, we use low-cost global descriptors in combination with a decision strategy adapted from a reinforcement learning technique. Our evaluation results are satisfactory to detect short segments of at least 2-seconds length under a non-simulated and severely transformed video dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The Content-Based Video Copy Detection task (CCD) was part of the TREC Video Retrieval (TRECVID) workshop series (from the year 2008 to 2011). See http://trecvid.nist.gov/

  2. The VCDB benchmark provided the VCDB baseline system timing data. They measured the processing time using a Xeon E5-2690 3.00 GHz CPU, using one thread without GPU intervention (see [16])

References

  1. Awad G, Over P, Kraaij W (2014) Content-based video copy detection benchmarking at TRECVID. ACM Trans Inf Syst 32(3):1–40. https://doi.org/10.1145/2629531

    Article  Google Scholar 

  2. Balntas V, Johns E, Tang L, Mikolajczyk K (2016) Pn-net: Conjoined triple deep network for learning local image descriptors. arXiv:1601.05030

  3. Baraldi L, Douze M, Cucchiara R, Jégou H (2018) Lamv: Learning to align and match videos with kernelized temporal layers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision and Pattern Recognition

  4. Batista da Silva H, Pereira de Almeida R, Barbosa da Fonseca G, Caetano C, Vieira D, do Patrocínio ZKG, De Albuquerque Araújo A, Guimarães SJF (2016) Video similarity search by using compact representations. In: Proceedings of the ACM Symposium on Applied Computing, pp 80–83. https://doi.org/10.1145/2851613.2851876

  5. Cutting JE, DeLong JE, Nothelfer CE (2010) Attention and the evolution of hollywood film. Psychol Sci 21(3):432–439. https://doi.org/10.1177/0956797610361679

    Article  Google Scholar 

  6. Cutting JE, Brunick KL, DeLong JE, Iricinschi C, Candan A (2011) Quicker, faster, darker: Changes in Hollywood film over 75 years. i-Perception 6(2):569–576. https://doi.org/10.1068/i0441aap

    Article  Google Scholar 

  7. Douze M, Jégou H, Sandhawalia H, Amsaleg L, Schmid C (2009) Evaluation of GIST descriptors for web-scale image search. In: Proceedings of the ACM International Conference on Image Video Retrieval. https://doi.org/10.1145/1646396.1646421

  8. Esen E, Ozkan S, Atil I (2016) Large-Scale video search with efficient temporal voting structure. arXiv:1607.0

  9. Esmaeili M, Fatourechi M, Ward R (2011) A robust and fast video copy detection system using content-based fingerprinting. IEEE Trans Inform Forensics Security 6 (1):213–226. https://doi.org/10.1109/TIFS.2010.2097593

    Article  Google Scholar 

  10. Fischer P, Dosovitskiy A, Brox T (2014) Descriptor matching with convolutional neural networks: a comparison to sift. arXiv:1405.5769

  11. Guzman-Zavaleta ZJ, Feregrino-Uribe C (2016) towards a video passive content fingerprinting method for Partial-Copy detection robust against Non-Simulated attacks. Plos One 11(11):e0166,047. https://doi.org/10.1371/journal.pone.0166047

    Article  Google Scholar 

  12. Guzman-Zavaleta ZJ, Feregrino-Uribe C, Morales-Sandoval M, Menendez-Ortiz A (2017) A robust and low-cost video fingerprint extraction method for copy detection. Multimedia Tools and Applications 76(22):24,143–24,163. https://doi.org/10.1007/s11042-016-4168-6

    Article  Google Scholar 

  13. Held D, Thrun S, Savarese S (2015) Deep learning for single-view instance recognition. arXiv:1507.08286

  14. Himeur Y, Sadi KA (2017) Robust video copy detection based on ring decomposition based binarized statistical image features and invariant color descriptor (RBSIf-ICD). Multimedia Tools and Applications pp 1–23. https://doi.org/10.1007/s11042-017-5307-4

  15. Jiang YG, Jiang Y, Wang J (2014) VCDB: a Large-Scale database for partial copy detection in videos. In: Proceedings of the European Conference on Computer Vision, pp. 357–371. https://doi.org/10.1007/978-3-319-10593-2_24

  16. Jiang YG, Wang J (2016) Partial Copy Detection in Videos: A Benchmark and An Evaluation of Popular Methods. IEEE Transactions on Big Data 2(1):32–42. https://doi.org/10.1109/TBDATA.2016.2530714

    Article  Google Scholar 

  17. Kalker T, Haitsma J, Oostveen J (2001) Issues with digital watermarking and perceptual hashing. In: Proceedings of the SPIE Multimedia Systems and Applications IV, vol. 4518, pp. 189–197. https://doi.org/10.1117/12.448203

  18. Kim S, Choi JY, Han S, Ro YM (2014) Adaptive weighted fusion with new spatial and temporal fingerprints for improved video copy detection. Signal Process Image Commun 29(7):788–806. https://doi.org/10.1016/j.image.2014.05.002

    Article  Google Scholar 

  19. Law-To J, Joly A, Boujemaa N (2007) MUSCLE-VCD-2007: A live benchmark for video copy detection https://www.rocq.inria.fr/imedia/civr-bench/data.html. Accessed: 2017-08-03

  20. Lian S, Nikolaidis N, Sencar H Content-based video copy detection: a survey. Intelligent Multimedia Analysis for Security Applications. Studies in Computational Intelligence pp. 253–273. https://doi.org/10.1007/978-3-642-11756-5_12

  21. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) recognizing complex activities by a probabilistic Interval-Based model. In: Proceedings of the Conference on Artificial Intelligence, pp 1266–1272

  22. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: Recognizing complex activities from sensor data. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp 1617–1623

  23. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) fortune teller : Predicting your career path. In: Proceedings of the Conference on Artificial Intelligence, pp 201–207

  24. Mobahi H, Collobert R, Weston J (2009) Deep learning from temporal coherence in video. In: Proceedings of the Annual International Conference on Machine Learning pp 737–744. ACM

  25. Preotiuc-Pietro D, Hopkins D, Liu Y, Ungar L (2017) Beyond binary labels: Political ideology prediction of twitter users. In: Proceedings of the Annual Meeting of the Association for Computational Linguistics. https://doi.org/10.18653/v1/P17-1068

  26. Ragho SR, Biradar CS (2015) Efficient and robust detection of duplicate videos in a large database: A Survey. International Journal of Science and Research (IJSR) 4 (6):1775–1778

    Google Scholar 

  27. Robertson DJ, Kramer RSS, Burton AM (2015) Face averages enhance user recognition for smartphone security. PLoS ONE 10 (3):e0119,460. https://doi.org/10.1371/journal.pone.0119460

    Article  Google Scholar 

  28. Rossion B, Hanseeuw B, Dricot L (2012) Defining face perception areas in the human brain: a large-scale factorial fMRI face localizer analysis. Brain Cogn 79 (2):138–57. https://doi.org/10.1016/j.bandc.2012.01.001

    Article  Google Scholar 

  29. Sandeep S, Sharma S, Thakur M, Bora PK (2016) Perceptual video hashing based on Tucker decomposition with application to indexing and retrieval of near-identical videos. Multimedia Tools and Applications 75(13):7779–7797. https://doi.org/10.1007/s11042-015-2695-1

    Article  Google Scholar 

  30. Shinde S, Chiddarwar G (2015) Recent Advances in Content Based Video Copy Detection. In: Proceedings of the International Conference on Pervasive Computing. IEEE, India, pp 1–6. https://doi.org/10.1109/PERVASIVE.2015.7087093

  31. Sun J, Wang J, Yuan H, Liu X, Liu J (2013) Unequally weighted video hashing for copy detection. In: Proceedings of the International Conference on Multimedia Modeling, pp. 546–557. Springer

  32. Sun J, Liu X, Wan W, Li J, Zhao D, Zhang H (2016) Video hashing based on appearance and attention features fusion via DBN. Neurocomputing 213:84–94. https://doi.org/10.1016/j.neucom.2016.05.098

    Article  Google Scholar 

  33. Sutton RS, Barto AG (1998) Reinforcement learning: An introduction, vol 1. MIT press, Cambridge

    Google Scholar 

  34. Tsivian Y, Civjans G (2005) Cinemetrics http://www.cinemetrics.lv/ Accessed: 2017-08-02

  35. Wang L, Bao Y, Li H, Fan X, Luo Z (2017) Compact cnn based video representation for efficient video copy detection. In: Proceedings of the International Conference on MultiMedia Modeling, pp. 576–587. Springer International Publishing

  36. Watkins C (1989) Learning from Delayed Rewards. Ph.D. thesis. Cambridge University, Cambridge

    Google Scholar 

  37. Wu X, Ngo CW, Hauptmann AG, Tan HK (2007) CC-WEB-VIDEO: Near-Duplicate Web Video Dataset http://vireo.cs.cityu.edu.hk/downloads.html. Accessed: 2017-08-03

  38. Yu D, Deng L (2011) Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Proc Mag 28(1):145–154

    Article  Google Scholar 

  39. Yuan F, Po Lm, Liu M, Xu X, Jian W, Wong K (2016) Shearlet Based Video Fingerprint for Content-Based Copy Detection. Journal of Signal and Information Processing pp 84–97

  40. Zhang Y, Zhang X (2016) effective Real-Scenario video copy detection. In: Proceedings of the International Conference on Pattern Recognition. IEEE, Mexico, pp 3940–3945

  41. Zhu Y, Huang X, Huang Q, Tian Q (2016) Large-scale video copy retrieval with temporal-concentration SIFT. Neurocomputing 187:83–91. https://doi.org/10.1016/j.neucom.2015.09.114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Jezabel Guzman-Zavaleta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzman-Zavaleta, Z.J., Feregrino-Uribe, C. Partial-copy detection of non-simulated videos using learning at decision level. Multimed Tools Appl 78, 2427–2446 (2019). https://doi.org/10.1007/s11042-018-6345-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6345-2

Keywords

Navigation