Skip to main content
Log in

A novel quantum image steganography algorithm based on exploiting modification direction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Quantum image steganography is the art and science of hiding secret information into quantum carrier images. This paper proposes a novel quantum image steganography algorithm based on an efficient embedding technique of exploiting modification direction. For convenience, this embedding technique is referred to the EMD embedding. In the EMD embedding, it is clear that each carrier pixel-group of the carrier image contains N pixels and each secret digit of secret information belongs to the (2N + 1)-ary notational system, where N is a system parameter. The embedding process is that at most only one pixel of the carrier pixel-group will be either increased by 1 or decreased by 1. The new algorithm takes advantage of the EMD embedding owning high embedding efficiency that the (2N + 1) different modifications to N carrier pixels represent the value of the secret digit. In addition, designing the dedicated quantum circuit for the EMD embedding contributes to better understanding the process of the new algorithm. Experimental simulation based on MATLAB shows that the new algorithm has good performance on imperceptibility, security, embedding efficiency and embedding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cao Y, Zhou ZL, Sun XM, Gao CZ (2015) Coverless information hiding based on the molecular structure images of material. Comput Mater Continua 54(2):197–207

    Google Scholar 

  2. Chen XB, Dou Z, Xu G, Wang C, Yang YX (2014) A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf Process 13(1):85–100

    Article  Google Scholar 

  3. Chen XB, Xu G, Su Y, Yang YX (2014) Robust variations of secret sharing through noisy quantum channel. Quantum Inf Comput 14(7&8):589–607

    MathSciNet  Google Scholar 

  4. Du JF, Li H, Xu XD, Shi MJ, et al (2002) Experimental realization of quantum games on a quantum computer. Phys Rev Lett 88(13):137902

    Article  Google Scholar 

  5. Eggeling T, Werner RF (2002) Hiding classical data in multipartite quantum states. Phys Rev Lett 89(9):097905

    Article  Google Scholar 

  6. Gea-Banacloche J (2002) Hiding messages in quantum data. J Math Phys 43(9):4531–4536

    Article  MathSciNet  Google Scholar 

  7. Guo GC, Guo GP (2012) Quantum data hiding with spontaneous parameter down-conversion. Phys Rev A 68(4):4343–4349

    Google Scholar 

  8. Heidari S, Farzadnia E (2017) A novel quantum LSB-based steganography method using the gray code for colored quantum images. Quantum Inf Process 16(10):242

    Article  MathSciNet  Google Scholar 

  9. Islam MS, Rahman MM, Begum Z, Hafiz MZ (2009) Low cost quantum realization of reversible multiplier circuit. Inf Technol J 8(2):208–213

    Article  Google Scholar 

  10. Le PQ, Dong FY, Hirota K (2011) A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Kluwer Acad Publ 10(1):63–84

    MathSciNet  MATH  Google Scholar 

  11. Liao X, Wen QY, Sun Y, Zhang J (2011) Multi-party covert communication with steganography and quantum secret sharing. J Syst Softw 83(10):1801–1804

    Article  Google Scholar 

  12. Liu WJ, Wang HB, Yuan GL, Xu Y, et al (2016) Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf Process 15(2):869–879

    Article  MathSciNet  Google Scholar 

  13. Liu WJ, Xu Y, Yang CN, Gao PP, Yu WB (2017) An efficient and secure arbitrary N-party quantum key agreement protocol using Bell states. Int J Theor Phys 57(6):1–13

    MathSciNet  MATH  Google Scholar 

  14. Ma YY, Luo XY, Li XL, Bao ZK, Zhang Y (2018) Selection of rich model steganalysis features based on decision rough set α-positive region reduction. IEEE Trans Circ Syst Vid Technol PP(99):1–1

    Google Scholar 

  15. Matin K (2007) Steganographic communication with quantum information. In: Proceedings of the 9th international conference on information hiding, Heidelberg, pp 32–49

  16. Meng RH, Steven RG, Wang J, Sun XM (2018) A fusion steganographic algorithm based on faster R-CNN. Comput Mater Continua 55(1):1–16

    Google Scholar 

  17. Mihara T (2012) Quantum steganography embedded any secret text without changing the content of cover data. J Quantum Inf Sci 2(1):10–14

    Article  Google Scholar 

  18. Mihara T (2015) Quantum steganography using prior entanglement. Phys Lett A 379(12–13):952– 955

    Article  Google Scholar 

  19. Nie QK, Xu XB, Feng BW, Zhang LY (2018) Defining embedding distortion for intra prediction mode-based video steganography. Comput Mater Continua 55(1):59–70

    Google Scholar 

  20. Pradeep A, Mridula S, Mohanan P (2016) High security identity tags using spiral resonators. Comput Mater Continua 52(3):185–195

    Google Scholar 

  21. Qu ZG, He HX, Ma SY (2016) A novel self-adaptive quantum steganography based on quantum image and quantum watermark. In: International conference on cloud computing & security, pp 394– 403

  22. Qu ZG, Keeney J, Robitzsch S, Zaman F, Wang XJ (2016) Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks. Chin Commun 13(7):108–116

    Article  Google Scholar 

  23. Qu ZG, Cheng ZW, Luo MX, Liu WJ (2017) A robust quantum watermark algorithm based on quantum log-polar images. Int J Theor Phys 56(11):3460–3476

    Article  MathSciNet  Google Scholar 

  24. Shailender G, Bhushan AG (2012) Information hiding least significant bit steganography and cryptography. Int J Modern Educ Comput Sci 4(6):27–34

    Article  Google Scholar 

  25. Shaw BA, Brun TA (2011) Quantum steganography with noisy quantum channels. Phys Rev A 83(2):498–503

    Article  Google Scholar 

  26. Venegas-Andraca SE, Bose S (2003) Storing, processing and retrieving an image using quantum mechanics. Proc SPIE Conf Quantum Inf Comput 5105:1085–1090

    Google Scholar 

  27. Wang D, Liu ZH, Zhu WN, Li SZ (2012) Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput Sci 39(9):302–306

    Google Scholar 

  28. Wang S, Sang JZ, Song XH, Niu XM (2015) Least significant qubit (LSQb) information hiding algorithm for quantum image. Measurement 73:352–359

    Article  Google Scholar 

  29. Wang JW, Li T, Shi YQ, Lian SG, Ye JY (2017) Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed Tools Appl 76(22):23721–23737

    Article  Google Scholar 

  30. Wei ZH, Chen XB, Niu XX, Yang YX (2013) A novel quantum steganography protocol based on probability measurements. Int J Quantum Inf 11(07):1350068

    Article  Google Scholar 

  31. Wei ZH, Chen XB, Niu XX, Yang YX (2015) The quantum steganography protocol via quantum noisy channels. Int J Theor Phys 54(8):2505–2515

    Article  MathSciNet  Google Scholar 

  32. Zhang XP, Wang SZ (2006) Efficient steganographic embedding by exploiting modification direction. Commun Lett IEEE 10(11):781–783

    Article  Google Scholar 

  33. Zhang Y, Lu K, Gao YH (2013) NEQR: a novel enhanced quantum representation of digital images. Quantum Inf Process 12(8):2833–2860

    Article  MathSciNet  Google Scholar 

  34. Zhang Y, Lu K, Gao YH, Xu K (2013) A novel quantum representation for log-polar images. Quantum Inf Process 12(9):3103–3126

    Article  MathSciNet  Google Scholar 

  35. Zhang Y, Qin C, Zhang WM, Liu FL, Luo XY (2018) On the fault-tolerant performance for a class of robust image steganography. Signal Process 146:99–111

    Article  Google Scholar 

  36. Zhou RG, Hu WW, Fan P (2017) Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf Process 16(9):212

    Article  MathSciNet  Google Scholar 

  37. Zhou QL, Qiu YB, Li L, Lu JF (2018) Steganography using reversible texture synthesis based on seeded region growing and LSB. Comput Mater Continua 55(1):1:151–163

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61373131, 61303039, 61232016, 61501247), the Six Talent Peaks Project of Jiangsu Province (Grant No. 2015-XXRJ-013), Natural Science Foundation of Jiangsu Province (Grant No. BK20171458), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (China under Grant No.16KJB520030), Sichuan Youth Science and Technique Foundation (No.2017JQ0048), NUIST Research Foundation for Talented Scholars (2015r014), PAPD and CICAEET funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Qu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Z., Cheng, Z., Liu, W. et al. A novel quantum image steganography algorithm based on exploiting modification direction. Multimed Tools Appl 78, 7981–8001 (2019). https://doi.org/10.1007/s11042-018-6476-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6476-5

Keywords

Navigation