Skip to main content
Log in

A fast computational approach for illusory contour reconstruction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Illusory contour reconstruction can be modeled as a minimization problem with a tractable variational level set formulation, utilizing Euler’s elastica to reconstruct the illusory boundaries. However, this kind of formulation is very difficult to solve numerically as it is hard to implement such optimization algorithms efficiently in practice. In this paper, we propose an equivalently reduced variational level set formulation by taking the level set functions as signed distance functions. Technically, an alternating direction method of multipliers (ADMM) is developed by introducing some auxiliary variables, Lagrange multipliers and applying an alternating optimization strategy. With the proposed ADMM method, the minimization problem can be transformed into a series of sub-problems, which can be solved easily via using the Gauss-Seidel iterations and Fast Fourier Transform (FFT). The corresponding level set functions are regarded as signed distance functions during computation process using a simple algebraic projection method, which avoids the traditional re-initialization process for conventional level set functions. Extensive experiments have been conducted on both synthetic and real images, which validated the proposed approach, and demonstrated the advantages of the proposed ADMM-Projection (ADMM-P) method over the existing algorithms based on traditional gradient descent method (GDM) in terms of computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amer MR, Yousefi S, Raich R, Todorovic S (2015) Monocular extraction of 2.1D sketch using constrained convex optimization. Int J Comput Vis 112(1):23

    Article  MATH  Google Scholar 

  2. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  3. Chan TF, Vese LA (2001) A Level Set Algorithm for Minimizing the Mumford-Shah Functional in Image Processing. In IEEE Workshop on Variational and Level Set Methods in Computer Vision, pp. 161–168

  4. Chan TF, Kang SH, Shen JH (2002) Euler's Elastica and curvature-based Inpainting. SIAM J Appl Math 63(2):564–592

    MathSciNet  MATH  Google Scholar 

  5. Chen K, Tai XC (2005) A Nonlinear Multigrid Method for Curvature Equations Related to Total Variation Minimization. UCLA CAM Report, 05–26

  6. Geiger D, Pao H, Rubin N (1998) Salient and Multiple Illusory Surfaces. In Computer Vision and Pattern Recognition, 1998. Proceedings. Computer Society Conference on 1998 IEEE, pp. 118–124

  7. Glowinski R, Pan TW, Tai XC (2016) Some Facts about Operator Splitting and Alternating Direction Methods. UCLA CAM Report, 16–10

  8. Huang Y, Yao H, Zhao S et al (2017) Towards more efficient and flexible face image Deblurring using robust salient face landmark detection. Multimedia Tools and Applications 76(1):123–142

    Article  Google Scholar 

  9. Jiang X, Yao H, Zhao S (2013) Edge-respecting Image Smoothing via Extrema Interpolation, Pacific-Rim Conference on Multimedia. Springer, Cham, 190–199

    Google Scholar 

  10. Jiang X, Yao H, Zhao S (2017) Text image Deblurring via two-tone prior. Neurocomputing 242:1–14

    Article  Google Scholar 

  11. Jung YM, Shen JJ (2008) First-order modeling and stability analysis of illusory contours. J Vis Commun Image Represent 19(1):42–55

    Article  Google Scholar 

  12. Kang SH, Zhu W, Shen JH (2014) Illusory shapes via corner fusion. SIAM Journal on Imaging Sciences 7(4):1907–1936

    Article  MathSciNet  MATH  Google Scholar 

  13. Kanizsa G (1979) Organization in Vision. Praeger, New York

    Google Scholar 

  14. Kellman PJ, Shipley TF (1991) A theory of visual interpolation in object perception. Cogn Psychol 23(2):141–221

    Article  Google Scholar 

  15. Kellman P et al (2017) Classification images reveal that deep learning networks fail to perceive illusory contours. J Vis 17(10):569–569

    Article  Google Scholar 

  16. Li C, Xu C, Gui C, Fox MD (2005) Level Set Evolution without Re-initialization: a New Variational Formulation, CVPR 2005. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1:430–436

    Google Scholar 

  17. Loreti P, March R (2000) Propagation of fronts in a nonlinear fourth order equation. Eur J Appl Math 2:203–213

    Article  MathSciNet  MATH  Google Scholar 

  18. Masnou S (2002) Disocclusion: a Variational approach using level lines. IEEE Trans Image Process 11(2):68–76

    Article  MathSciNet  Google Scholar 

  19. Mumford D (1994) Elastica and computer vision. In: Bajaj CL (ed) Algebraic geometry and its applications. Springer Verlag, New York, pp 491–506

    Chapter  MATH  Google Scholar 

  20. Myllykoski M, Glowinski R, Karkkainen T, Rossi T (2015) A new augmented Lagrangian approach for L1-mean curvature image Denoising. SIAM Journal of Imaging Sciences 8(1):95–125

    Article  MATH  Google Scholar 

  21. Nitzberg M, Mumford D (1990) The 2.1D sketch. In: Proceedings of the Third IEEE International Conference on Computer Vision, pp.691 138–144

  22. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  23. Poscoliero T, Girelli M (2017) Electrophysiological Modulation in an Effort to Complete Illusory Figures: Configuration, Illusory Contour and Closure Effects, Brain topography, 1–16

  24. Ringach DL, Shapley R (1996) Spatial and temporal properties of illusory contours and a modal boundary completion. Vis Res 36(19):3037–3050

    Article  Google Scholar 

  25. Samson C, Blanc-Féraud L, Aubert G, Zerubia J (1999) Multiphase Evolution and Variational Image Classification, INRIA, RR-3662

  26. Sarti A, Malladi R, Sethian JA (2000) Subjective surfaces: a method for completing missing boundaries. Proc Natl Acad Sci 97(12):6258–6263

    Article  MathSciNet  MATH  Google Scholar 

  27. Sarti A, Malladi R, Sethian JA (2002) Subjective surfaces: a geometric model for boundary completion. Int J Comput Vis 46(3):201–221

    Article  MATH  Google Scholar 

  28. Sussman M, Fatemi E (1999) An efficient, Interface-preserving level set Redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J Sci Comput 20(4):1165–1191

    Article  MathSciNet  MATH  Google Scholar 

  29. Sussman M, Smereka P, Osher S (1994) A level set approach for computing solutions to incompressible two-phase flow. J Comput Phys 114(1):146–159

    Article  MATH  Google Scholar 

  30. Tai XC (2014) Fast Numerical Schemes Related to Curvature Minimization: A Brief and Elementary Review, UCLA CAM Report, 14–40

  31. Tai XC, Hahn J, Chung GJ (2011) A fast algorithm for Euler's Elastica model using augmented Lagrangian method. SIAM Journal on Imaging Sciences 4(1):313–344

    Article  MathSciNet  MATH  Google Scholar 

  32. Tan L, Pan Z, Liu W, Duan J, Wei W, Wang G (2017) Image segmentation with depth information via simplified Variational level set formulation. Journal of Mathematical Imaging and Vision 60(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  33. Tan L, Liu W, Pan Z (2018) Color image restoration and Inpainting via Multi-Channel Total curvature. Appl Math Model 61:280–299

    Article  MathSciNet  Google Scholar 

  34. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293

    Article  MATH  Google Scholar 

  35. Wang Y, Yin W, Zeng J (2015) Global Convergence of ADMM in Nonconvex Non-smooth Optimization. arXiv preprint arXiv:1511.06324

  36. Yan C, Zhang Y, Xu J et al (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Processing Letters 21(5):573–576

    Article  Google Scholar 

  37. Yan C, Zhang Y, Xu J et al (2014) Efficient parallel framework for HEVC motion estimation on many-core processors. IEEE Transactions on Circuits and Systems for Video Technology 24(12):2077–2089

    Article  Google Scholar 

  38. Yan Y, Nie F, Li W et al (2016) Image classification by cross-media active learning with privileged information. IEEE Transactions on Multimedia 18(12):2494–2502

    Article  Google Scholar 

  39. Yan C, Xie H, Yang D et al (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295

    Article  Google Scholar 

  40. Yan C, Xie H, Liu S et al (2018) Effective Uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229

    Article  Google Scholar 

  41. Yan C, Xie H, Chen J et al. (2018) An Effective Uyghur Text Detector for Complex Background Images. IEEE Transactions on Multimedia

  42. Yang F, Chen K, Yu B, Fang D (2014) A relaxed fixed point method for a mean curvature-based Denoising model. Optimization Methods & Software 29(2):274–285

    Article  MATH  Google Scholar 

  43. Yang F, Bruckstein AM, Cohen LD (2017) PointFlow: A Model for Automatically Tracing Object Boundaries and Inferring Illusory Contours, International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, 485–498

    Google Scholar 

  44. Yashtini M (2015) Alternating Direction Method of Multiplier for Euler’s Elastica-Based Denoising, Scale Space and Variational Methods in Computer Vision. Springer International Publishing, 690–701

  45. Zhao HK (2005) Fast sweeping method for Eikonal equations. Math Comput 74:603–627

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao HK, Chan TF, Merriman B, Osher S (1996) A Variational level set approach to multiphase motion. J Comput Phys 127(1):179–195

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhu W, Chan TF (2007) A Variational model for capturing illusory contours using curvature. Journal of Mathematical Imaging and Vision 27(1):29–40

    Article  MathSciNet  Google Scholar 

  48. Zhu W, Chan TF (2012) Image Denoising using mean curvature of image surface. SIAM Journal on Imaging Sciences 5(1):1–32

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhu W, Chan TF, Esedoglu S (2006) Segmentation with depth: a level set approach. SIAM J Sci Comput 28(5):1957–1973

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhu W, Tai XC, Chan TF (2013) Image segmentation using Euler's Elastica as the regularization. J Sci Comput 57(2):414–438

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu W, Tai XC, Chan TF (2013) Augmented Lagrangian method for a mean curvature based image denoising model. Inverse problems and imaging 7(4):1409–1432

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work has been partially supported by research funds from the National Natural Science Foundation of China with grant Nos.61602321, 61305045, 61363066 and 61303079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Tan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Liu, W., Li, L. et al. A fast computational approach for illusory contour reconstruction. Multimed Tools Appl 78, 10449–10472 (2019). https://doi.org/10.1007/s11042-018-6546-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6546-8

Keywords

Navigation