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Abstract 

Sign Language Recognition (SLR) has become one of the most important research areas  

in the field of human computer interaction. SLR systems are meant to automatically trans- 

late sign language into text or speech, in order to reduce the communicational gap between 

deaf and hearing people. The aim of this paper is to exploit multimodal learning techniques 

for an accurate SLR, making use of data provided by Kinect and Leap Motion. In this 

regard, single-modality approaches as well as different multimodal methods, mainly based 

on convolutional neural networks, are proposed. Our main contribution is a novel multi- 

modal end-to-end neural network that explicitly models private feature representations that 

are specific to each modality and shared feature representations that are similar between 

modalities. By imposing such regularization in the learning process, the underlying idea is 

to increase the discriminative ability of the learned features and, hence, improve the general- 

ization capability of the model. Experimental results demonstrate that multimodal learning 

yields an overall improvement in the sign recognition performance. In particular, the novel 

neural network architecture outperforms the current state-of-the-art methods for the SLR 

task. 
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Convolutional neural networks · Kinect · Leap motion 

 
1 Introduction 

 
Sign language (SL) is an integral form of communication especially used by hearing 

impaired people within deaf communities worldwide. It is a visual means of communica- 

tion, with its own lexicon and grammar, that combines articulated hand gestures along with 

facial expressions to convey meaning. The population of SL speakers is extended by famil- 

iars and friends of the deaf, interpreters and the curious, who learn the language by their 
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own initiative. As most of hearing people are unfamiliar with SL, deaf people find it dif- 

ficult to interact with the hearing majority. The result is the isolation of deaf communities 

from the overall society. 

In this regard, Sign Language Recognition (SLR) has becoming an appealing research 

topic in modern societies. SLR systems have several applications. Their main purpose is  

to automatically translate the signs from video or images into the corresponding text or 

speech. This is important not only to bridge the communicational gap between deaf and 

hearing people but also to increase the amount of contents to which the deaf can access. The 

creation of educational tools or games for deaf and visual dictionaries of sign language are 

some interesting examples of SLR use cases. 

SLR is a multidisciplinary challenging task since it involves several fields, such as sign 

capturing methods, computer vision, machine learning, human action and sign language 

understanding. Although several SLR systems have been proposed in the literature, there 

are still many opportunities for research and improvement. 

 

1.1 Related work 
 

The SLR task can be addressed by using wearable devices or vision-based approaches. 

Vision-based SLR is less invasive since there is no need to wear cumbersome devices that 

may affect the natural signing movement. A vision-based SLR system is typically composed 

by three main building blocks: (i) hand segmentation and/or tracking, (ii) feature extraction, 

and (iii) sign recognition. Figure 1 depicts some examples of different vision-based SLR 

systems, according to the data acquisition sensor. 

The first vision-based SLR approaches were just based on the extraction of colour infor- 

mation from images or videos [1, 4]. In general, a set of relevant colour-based features     

is extracted to be used in a traditional classification module that provides the sign recog- 

nition. As these representations contain a 2D description of the three-dimensional hand 

pose, colour-based approaches often demonstrate several limitations especially when the 

 

 

 

Fig. 1 Vision-based SLR systems: colour information provided by RGB cameras (a), colour and depth infor- 

mation provided by depth cameras (b) and the hand position and orientation provided by Leap Motion      

(c) 



 

 

 

signs to be recognized involve complex 3D movements (i.e., in which there are several 

inter-occlusions between the various hand parts). 

With the emergence of low-cost consumer depth cameras (e.g., Microsoft’s KinectTM), 

some SLR systems have explored the 3D information for an accurate gesture recognition 

[5, 6, 11, 29]. This new layer of information may be particularly helpful when the position 

and angles of the fingers are needed with high precision. 

Bergh et al. [5] demonstrated that depth information can be used together with colour 

information to increase the recognition accuracy, especially when there is superposition 

between the hands and the face. In [6], multiple depth-based descriptors are fed into a SVM 

classifier for gesture recognition. In a first stage, the hands are detected and segmented using 

both colour and depth information. Afterwards, different subsets of depth-based features, 

such as distance, elevation, curvature and palm area features, are extracted. 

The recent introduction of Leap Motion has launched new research lines for gesture 

recognition.Instead of a complete depth map, the Leap Motion sensor directly provides  

the 3D spatial positions of the fingertips and the hand orientation with quite accuracy (see 

Fig. 1). One of the first studies referring to the utilization of Leap Motion for SLR has 

been presented in [17]. The authors stated that, although Leap Motion may have a great 

potential for sign recognition, it is not always able to recognize all fingers in some hand 

configurations (e.g., when the hand is not perpendicular to the camera). In order to overcome 

that limitation, Marin et al. [14, 15] combined the input data from Leap Motion with Kinect. 

The authors proposed a feature-level fusion approach with hand-crafted features extracted 

from two modalities (i.e., depth data from Kinect and Leap Motion data). The extracted 

features are based on the distances between the hand contour points and the hand’s centroid, 

the curvature of the hand contour, and the convex hull of the hand shape. 

More recently, Ferreira et  al.  [7]  also  explored  the  complementary  characteristics  

of Kinect and Leap Motion for gesture recognition. Instead of traditional hand-crafted 

approaches, the authors proposed several multimodal deep learning strategies, mainly based 

on Convolutional Neural Networks (CNNs). The advantage is to avoid the extraction of 

hand-crafted features and the inherent difficulty of designing reliable features to the large 

variations of hand gestures. In principle, a traditional multimodal end-to-end deep neural 

network, as proposed in [7], should be able to encode the relationships and the complemen- 

tary aspects of the input modalities (i.e., Kinect and Leap Motion). However, in practice, a 

multimodal deep neural network requires a lot of training data to generalize well. This is 

not the case of the SLR context where large multimodal datasets, with both Kinect and Leap 

Motion data, are scarce. 

 

1.2 Deep multimodal regularization 
 

In the deep multimodal learning context, an important design consideration is the for- 

mulation of well-designed loss functions along with regularization terms that enforce 

inter-modality and intra-modality relationships. Although the relationship between different 

modalities has not been thoroughly investigated in the SLR task, several deep multimodal 

regularization techniques have been proposed in the scope of more generic problems, such 

as RGB-D object recognition [12, 20, 24, 25, 27], transfer learning [3], and deep feature 

embeddings [10, 19]. 

In order to learn relationships between modalities, Sohn et al. [20] proposed a loss func- 

tion that minimizes the variation of information between modalities. The underlying idea is 

that learning to maximize the amount of information that one data modality has about the 

others would allow multimodal generative models to reason about the missing data modality 



 

 

 

given partial observations. Wu et al. [28] explored both inter-modality and intra-class rela- 

tionships, for video semantic classification, by imposing trace-norm based regularizations 

on the shared and output layers of the neural network. Loss functions that enforce inter- and 

intra-modality correlations have also been proposed in [24, 25]. In particular, Wang et al. 

[24] proposed a multimodal fusion layer that uses matrix transformations to enforce a com- 

mon part to be shared by features of different modalities while retaining modality-specific 

properties. Lenz et al. [12] introduced a structured regularization term in the loss function, in 

order regularize the number of modalities used per feature (node). In this regard, the model 

is able to learn correlated features between multiple input modalities, while discarding weak 

correlations between them. 

The formulation of well-designed loss functions, along with additional regularization 

terms, have also been explored in many other domains, such as transfer learning [3, 23], 

deep feature embeddings [10, 19], and image retrieval [30] as well as to maximize domain- 

specific performance metrics [8, 13, 30]. A very comprehensive and recent survey on deep 

multimodal learning and regularization can be found in [18]. 

 

1.3 Major contributions 
 

This paper presents a novel multimodal end-to-end neural network, called End-to-End 

Network with Regularization (EENReg), that explicitly models the complementary char- 

acteristics of the input modalities. Our novel architecture, along with a well-designed loss 

function, results in a model that jointly learns to extract representations that are specific to 

each modality as well as shared representations across modalities. The underlying idea is to 

increase the discriminative ability of the learned features by regularizing the entire learning 

process and, hence, improve the generalization capability of multimodal deep models. The 

present work expands the ideas proposed in [7], improving their results. In particular, our 

main novelties are: 

– A comparative study between single-modality and multimodal learning techniques,   

in order to demonstrate the effectiveness of multimodal learning in the overall sign 

recognition performance; 

– The introduction of a more robust hand gesture detection algorithm, which promotes an 

overall improvement in the sign recognition performance; 

– The implementation of a more complete randomized data augmentation scheme, which 

allows training deeper neural networks without overfitting; 

– The proposal of a novel multimodal end-to-end neural network architecture, the so- 

called EENReg, along with a well-designed loss function that explicitly learns to extract 

deep features representations that are unique and shared between modalities. By induc- 

ing the model to jointly learn both modality-specific and modality-shared features, the 

proposed EENReg outperforms the state-of-the-art multimodal approaches. 

Our work is inspired by the recent works on transfer learning [3] and local similarity- 

aware deep feature embeddings [10], which explore the complementary properties between 

the source and target domains. However, we extent their ideas for supervised deep multi- 

modal learning, in particular, for the SLR task, which implied an entire refinement of the 

neural network architecture, loss function, and regularization terms. 

The paper is organized in six sections including the Introduction (Section 1). Section 2 

presents a pre-processing step for segmenting the hands from the noisy background, before 

sign recognition. The implemented single-modality and conventional multimodal SLR 

methodologies are fully described in Sections 3 and 4, respectively. The proposed EENReg 



 

 

 

model, which is the major contribution of the paper, is presented in Section 5. Section 6 

reports the experimental evaluation of the proposed methodologies. Finally, conclusions and 

some topics for future work are presented in Section 7. 

 
 

2 Pre-processing for hand detection 
 

Both Kinect modalities, colour and depth, require a pre-processing step in order to seg- 

ment the hands, from the noisy background of the image, before feature extraction and sign 

recognition. As illustrated in Fig. 2, the developed hand segmentation method exploits both 

colour and depth information of Kinect. 

In a first step, a skin colour segmentation, in the YCbCr colour space, is performed     

to roughly distinguish skin pixels from background pixels. The YCbCr colour space was 

adopted since it is perceptually uniform and separates luminance and chrominance, which 

makes this colour space suitable for skin colour detection [9]. The YCbCr colour space 

comprises three channels, representing the luminance component (Y) and the chrominance 

components (Cb and Cr). The conversion from RGB to YCbCr is simply defined as follows: 

 
Y  = 0.299 · R + 0.587 · G + 0.114 · B (1) 

Cb = (B − Y) · 0.564 + 128 (2) 

Cr = (R − Y) · 0.713 + 128 (3) 

For illumination-invariance, the implemented skin colour segmentation method just 

makes use of both chrominance components (CbCr). In the CbCr subspace, the distribution 

of skin and background colours is modelled each one by a multivariate Gaussian mixture 

 

 

Fig. 2 Hand detection methodology: input depth image (a), input colour image (b), skin colour segmentation 

(c), filtered depth map (d), hand segmentation result (e) and the cropped colour and depth images (f) 
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model S and B, respectively. Therefore, the probability that a pixel j with colour value Xj 

belongs to the skin colour model S is defined as: 

k 

p(Xj | S) = γip(Xj | Si) 

i=1 

.  γi  
. 
 1 ΣT −1 . Σ

Σ
 

where l denotes the feature space dimension, k represents the number of Gaussian com- 

ponents of , each one characterized by its mean vector µSi , covariance matrix ΣSi and 

proportions γi. Likewise, the probability of a pixel belonging to the background colour 
model is modelled in a similar manner. 

After obtaining the skin model and the background model , the skin colour segmen- 

tation is performed by maximum likelihood classification of pixels within a test image. That 

is, a pixel with colour value X is classified as skin pixel if the following condition is verified: 

p(X  | S) > p(X | B) (5) 

As illustrated in Fig. 2c, the skin colour segmentation process results in a binary mask of the 

skin coloured objects present in the image (i.e., hand, face or other uncovered body parts). 

This binary mask is then used to filter the depth map, in order to only retain depth samples 

associated with skin coloured objects (see Fig. 2d). The underlying assumption is that the 

closest skin coloured object of the image corresponds to the hand, as the signer is typically 

the nearest object to the camera. 

After this stage, hand segmentation is performed on the filtered depth map using a region 

growing technique. First, a search for the region with the minimum depth value Dmin on the 

filtered depth map is performed. The corresponding region Rmin is chosen as the seed 

region for the hand detection process, if its area is greater than a threshold Tarea; otherwise 

the next closest region is selected. The area criterion is used so that the selected Rmin does 

not correspond to an isolated artefact due to measurement noise. In the next step, the neigh- 

bouring pixels are examined and added to the seed region Rmin based on a homogeneity 

criterion (i.e., if the depth value difference between those pixels and Rmin does not exceed a 

threshold Tdepth). This process is applied iteratively until no more pixels satisfy the homo- 

geneity criterion. As illustrated in Fig. 2e, the segmented hand is then represented by all 

pixels that have been merged during this iterative procedure. 

Once the segmentation process is completed, the original colour and depth images are 

both cropped by the bounding box of the segmented sign and, then, these resulting cropped 

images are resized to the average sign size of the training set (see Fig. 2f). 

 

Fig. 3 Illustration of the background suppression methodology for a given colour image: original cropped 

colour image (a), Euclidean distance map of each pixel to the segmentation mask centroid (b), distance 

transform of the segmentation mask (c), linear combination of the two distance maps (d) and its application 

on the cropped colour image (e) 

= , (4) 



 

 

 

To further reduce of the influence of the background in the recognition task, a back- 

ground suppression methodology is applied to the cropped images (see Fig. 3). First, a 

Euclidean distance map of each pixel to the segmentation mask centroid as well as the dis- 

tance transform of the segmentation mask are computed (Fig. 3b and c, respectively). These 

maps are linear combined and, then, multiplied with the cropped image. As illustrated in 

Fig. 3e, the final result is the fading out of the background pixels according to their distance 

to the segmentation centroid, while it keeps the foreground pixels unchanged. 

Finally, the image inputs are normalized to ensure that each pixel (i.e., input parameter) 

has a similar data distribution and, hence, make converge faster while training the models. 

Data normalization is done by subtracting the mean from each pixel, and then dividing the 

result by the standard deviation. For more pre-processing scenarios in deep learning, the 

reader should consider the following research works [26, 31]. 

 
 

3 Single-modality sign recognition 
 

In this section, the implemented single-modality methodologies for SLR are presented. For 

both Kinect modalities (colour and depth), we resorted to a deep learning strategy based 

on convolutional neural networks (CNNs); whereas for Leap Motion we implemented a 

traditional machine learning pipeline with hand-crafted feature extraction. This choice was 

motivated by the different nature of the data of these modalities. As the leap motion data is 

already at a high semantic level (i.e., well structured features), a shallow classifier is suitable 

for making predictions. 

 

3.1 Kinect modalities (colour and depth) 
 

3.1.1 CNN architecture 
 

The implemented neural network follows the traditional CNN architecture for classifica- 

tion [21]. It starts from several sequences of convolution-convolution-pooling layers to fully 

connected layers. More especifically, the implemented CNN is composed by six convolu- 

tional layers, three fully connected layers (or dense layers) and two max-pooling layers. The 

number of filters is doubled after each pooling operation. Finally, the last layer of the CNN 

is a softmax output layer, which contains the output probabilities for each class label. 

The output node that produces the largest probability is chosen as the overall classifica- 

tion. The architecture of the implemented CNN is illustrated in Fig. 4. 

 

 

Fig. 4 The architecture of the implemented CNN model for single-modality sign recognition, using colour 

(d = 3) or depth (d = 1) 
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For training the model, the goal is to minimize the categorical cross-entropy, a commonly 

used loss function for classification tasks, which is given by: 

N 

L = − yT
i  log ŷi, (6) 

i=0 

where yi is a column vector denoting the one-hot encoding of the class label for input i and 

yi are the softmax predictions of the model. The Nesterov’s Accelerated Gradient Descent with 

momentum was used for optimization. During the training stage, several regularization tech- 
niques were applied to prevent overfitting (i.e., dropout, l2-norm, and data augmentation). 
The implemented regularization techniques are fully described in Section 3.1.2. 

 

3.1.2 Regularization 
 

Dropout is a popular regularization technique introduced to prevent overfitting [22]. At 

each training stage, individual units are either “dropped out” or kept according to a defined 

probability p, so that a reduced network is left. Note that at each stage only the reduced 

network is trained on the data. Then, the removed units are reinserted into the network with 

their original weights. By avoiding training all units on all training data, dropout decreases 

overfitting in neural networks. In practice, dropout was applied to the fully connected layers 

of the implemented CNN. 

Data augmentation is the process of increasing, artificially, the number of training sam- 

ples, by means of different image transformations and noise addition. In here, a randomized 

data augmentation scheme based on both geometric and colour transformations is applied 

during the training step. The underlying idea is to increase the robustness of the CNN model 

to the wide range of hand gestures positions, poses, viewing angles as well as to differ-  

ent illumination conditions and contrasts. The data augmentation process is applied in an 

online-fashion, within every iteration, to a random half of the images of each mini-batch. 

Specifically, the considered geometric transformations are obtained through the follow- 

ing randomized affine image warping: 

Σ 
x

j Σ 

= 

Σ 
s 0 

ΣΣ 
cos (θ) − sin (θ) 

ΣΣ 
1  k1 

ΣΣ 
x − t1 

Σ 

, (7)
 

where θ is the rotation angle, k1 and k2 are the skew parameters along the x and y directions. 

t1 and t2 denote both translation parameters and s is the scale factor. It is import to note that 

the values of these parameters are randomly selected from predefined sets (those sets are 

listed in Section 6). Pixels mapped outside the original image are assigned with the pixel 

values of their mirrored position. 

The other type of image augmentation focuses on randomly normalizing the contrast of 

each channel in the training images. Formally, let Sc be the c-th channel of the input image, 

the new intensity value at each pixel in channel c is simply given by: 
 

S
j 
= 

     Sc − Sc (pL)  

�� 
Sc (pH ) − Sc (pL) 

 

, if Sc 

 

(pL ) ≤ Sc ≤ Sc 

 

(pH 

 

) , (8) 

1 , if Sc > Sc (pH ) 

where pL and pH represent the lower and higher histogram percentiles that are randomly 

selected for the colour transformation, respectively. This scheme simulates the scenario 

that the input images are acquired with different intensities, contrasts and illumination 

conditions. 
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Fig. 5 Illustration of the implemented randomized data augmentation process: original colour images (top 

row) along with the corresponding augmented images (bottom row) 

 
 

Figure 5 illustrates the application of the implemented data augmentation procedure. 

Although the resulting augmented images may be highly correlated between them, this ran- 

domized augmentation scheme significantly increases the size of the training set which 

allows the utilization of deep CNN architectures without overfitting. 

 

3.2 Leap Motion 
 

Unlike Kinect, Leap Motion does not provide a complete depth map, instead it directly 

provides a set of relevant features of hand and fingertips. The raw data of Leap Motion 

include the number of detected fingers, the position of the fingertips, the palm center, the 

hand orientation and the hand radius [15]. From these data, 3 different types of features 

were computed: 

1. Fingertip  distances  Di  Fi  C  ,i  1, ...,N; where  N  denotes  the  number  of 

detected fingers and Di represents the 3D distances between each fingertip Fi and the 

hand centre C; 

2. Fingertip  inter-distances  Ii   Fi   Fi   1  , i    1, ...,N    1;  represent  the  3D 

distances between consecutive fingertips; 

3. Hand direction O: represents the direction from the palm position toward the fingers. 

The direction is expressed as a unit vector pointing in the same direction as the directed 

line from the palm position to the fingers; 

where denotes the l2-norm, corresponding to the geometric distance between the fin- 

gertips. Both distance features are normalized by signer (user), according to the maximum 

fingertip distance and fingertip inter-distance of each user. This normalization is performed 

to make those features robust to people with different hand’s size. Then, these 3 sets of fea- 

tures are used as input into a multi-class SVM classifier for sign recognition. The block diagram 

of the implemented Leap Motion-based sign recognition approach is illustrated in Fig. 6. 

 
 

4 Conventional multimodal sign recognition 
 

The data provided by Kinect and Leap Motion have quite complementary characteristics, 

since while Leap Motion provides few accurate and relevant key-points, Kinect produces 
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Fig. 6 Single-modality sign recognition methodology of Leap Motion data 

 

 

both a colour image and a complete depth map with a large number of less accurate 3D 

points. Therefore, we intend to exploit them together for SLR purposes. 

According to the level of fusion, multimodal fusion techniques can be roughly grouped 

into two main categories: (i) decision-level and (ii) feature-level fusion techniques [16]. As 

described in the following, we propose multimodal approaches of each fusion category for 

the SLR task, making use of 3 modalities (i.e., colour, depth and Leap Motion data). 
Throughout the rest of the paper, let X = {(xc, xd, x l, yi)}N denote the labeled multi- 

modal dataset of i i i c d 

i=1
l represent the -th colour, 

N  samples used in this work, where xi , xi and xi i 

depth and leap motion sample, respectively, and yi denotes the ground-truth class labels. 
 

4.1 Decision-level fusion 
 

The purpose of decision-level fusion is to learn a specific classifier for each modality and, 

then, to find a decision rule between them. In this paper, we apply this concept making use 

of the output class probabilities of the models designed individually for each modality under 

analysis. Then, two main kinds of decision rules, to combine these class probabilities, were 

implemented: 1) pre-defined decisions rules, and 2) decision rules learned from the data. Let 

yc, yd and yl be the predictions of colour, depth and leap motion modalities, respectively; 

then, the decision-level fusion schemes is illustrated in Fig. 7. 

 

 
Fig. 7 Decision-level fusion, in 

which the decision rule is learned 

from the data. is an aggregate 

operator representing the 

concatenation of the 

modality-specific class 

probabilities 
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4.1.1 Pre-defined decision rules 
 

Herein, two different pre-defined decision rules were implemented. In the first approach, 

the final prediction is given by the argument that maximizes the averaged class probabili- 

ties. In the second approach, the final prediction is given by the model with the maximum 

confidence. The confidence of a model in making a prediction is measured by its highest 

class probability. 

 

4.1.2 Learned decision rule 
 

The underlying idea of this approach is to learn a decision rule from the data. Therefore, a 

descriptor that concatenates the class probabilities, extracted from the individual models of 

each modality, is created and, then, used as input into a multiclass SVM classifier for sign 

recognition. 

 

4.2 Feature-level fusion 
 

In general, feature-level fusion is characterized by three phases: (i) learning a feature repre- 

sentation/embedding, (ii) supervised training, and (iii) testing [16]. According to the order 

in which phases (i) and (ii) are made, feature-level fusion techniques can be roughly divided 

into two main groups: 1) End-to-end fusion, where the representation and the classifier are 

jointly learned; and 2) Multi-step fusion, where the representation is first learned and then 

the classifier is learned from it. 

 

4.2.1 End-to-end fusion 
 

The underlying idea of this approach is to jointly learn a multimodal deep feature 

representation hm and a classifier G(hm) 

that maps from the multimodal representation hm to the task-specific predictions y. In our 

scenario, the neural network has three input-specific pipes, one for each data type: (i) colour 

xc, (ii) depth xd and (iii) leap motion xl . Therefore, the multimodal feature embedding is 

simply given by the concatenation of the embeddings of each modality, such that: 

hm = 
.
f c(xc) � f d(xd) � f l(xl)

Σ 
, (9) 

where f c(xc), f d(xd) and f l(xl) denote the deep feature representations of colour, depth 

and leap motion modalities, respectively, and represents the concatenation operation. 

While the embeddings of colour f c(xc) and depth f d(xd) are both learned by a CNN, the 

leap motion embedding f l(xl) is learned by a classical multilayer neural network (NN) 

with two hidden layers (each one with 128 neurons). All the layers are trained together 

end-to-end. The architecture of the implemented end-to-end multimodal neural network is 

represented in Fig. 8a. 

 

4.2.2 Multi-step fusion 
 

As in the end-to-end approach, a multimodal representation hm is created, by concatenating 

the  modality-specific  representations  f c(xc),  f d(xd)  and  f l(xl).  However,  in  this  case, 

these representations are first learned individually. In particular, the representations f c(xc) 

and f d(xd) correspond to the activations extracted from the penultimate dense layer of 



 

 

 

 
 

Fig. 8 Feature-level fusion schemes: end-to-end feature fusion (a) and multi-step feature fusion (b). 

represents a concatenation operator 

 

 

each modality-specific CNN, and f l(xl) corresponds to the features extracted from the leap 

motion data (see Section 3). Then, for sign recognition, the multimodal representation vector 

hm is fed into an additional classifier (i.e., a multi-class SVM). The multi-step feature-level 

fusion scheme is depicted in Fig. 8b. 

 
 

5 Proposed multimodal end-to-end fusion with regularization 
 

Ideally, the end-to-end network, as described in Section 4.2.1, should be able to encode the 

most relevant aspects of the input modalities for the classification task. However, in prac- 

tice, training a multimodal end-to-end network with multiple input-specific pipes without 

overfitting is very difficult, mainly due to its huge number of parameters and, especially, if 

we have to deal with small datasets. 

Rather than adopting a conventional multimodal learning structure that involves simple 

feature- or decision-level fusions, our goal is to further explore the implicit dependence 

between different modalities. In this regard, we propose a novel multimodal end-to-end 

architecture, called End-to-End Network with Regularization (EENReg), that explicitly 

models what is unique and shared between modalities. The underlying idea is that the 

desired multimodal features should comprise the agreement or shared properties between 

different modalities, while retaining the modality-specific properties that can only be cap- 

tured by each modality individually. By imposing such regularization in the learning 

process, the model’s ability to extract meaningful features for the classification should 

improve. 

To induce the model to extract both modality-specific and modality-shared features, the 

EENReg network is composed by three private streams that are specific to each modal-  

ity and three shared streams between modalities. In addition, the loss function is defined  

in a such manner that encourages independence between these private and shared repre- 

sentations. The result is a model that produces shared representations that are similar for 

all modalities and private representations that are modality-specific. The classifier is then 

trained on these private and shared representations to enhance discriminative capability of 

the model. 
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5.1 Architecture 
 

As depicted in Fig. 9, the architecture of the EENReg comprises three private streams that 

are specific to each modality, three shared streams between modalities and a classifier. 

While the purpose of each private stream is to transform the data of each modality into 

a new modality-specific feature representation, the purpose of each shared stream is to per- 

form a mapping from each input modality to a shared representation between modalities. 

Therefore, the architecture of each stream consists of several sequences of convolution- 

convolution-pooling layers, for a typical CNN feature extraction, with a dense layer on top 

of that. In particular, each multimodal stream has the same architecture of the implemented 

CNN model for single-modality sign recognition (see Fig. 4 for more details). By con- 

catenating the shared and modality-specific feature representations, a multimodal feature 

representation is, then, created. 

Finally, a classifier that simply comprises three fully connected layers is fed with the 

multimodal feature representation. The last layer is a softmax output layer, which contains 

the output probabilities for each class label. 

 

 

 

 

 

Fig. 9 The architecture of the EENReg model that explicitly learns to extract deep feature representations 

that are unique and shared between modalities 
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5.2 Learning 

Let fm(x) be an embedding function that maps from an input sample x to a shared feature 

representation of modality m. Also, let fm(x) be an embedding function that maps from a 

sample x to a private feature representation that is specific to its modality. In order to main- 

tain feature comparability, the representations fm(x) and fm(x) are first normalized onto s p 

the unit hypersphere, i.e.,  f(x)  2  1. Then, the EENReg model is trained by minimizing 

the following loss function: 

 

L = Lclassif ication + α  Lprivate + β Lshared, (10) 

where α, β are the weights that control the interaction of the loss terms. The classification 

loss, Lclassif ication, trains the model to predict the output labels and corresponds to the 

categorical cross-entropy as defined in (6). 

The purpose of the private loss private is to encourage the shared and private repre- 

sentations of each modality to encode different aspects of the inputs. Therefore,   private    is 

defined by imposing orthogonality between the shared and the private representations of 

each modality, such that: 
 

N N 
 

p    i s i 

i=1 
N 

 

p i s i 

i=1 

+αl  
. .

f l (x l), f l(x l)
.
, (11) 

where   , is the dot product. αc, αd and αl are the weights that control the orthogonality 

between each modality representations. 

The shared loss shared encourages the shared representations of all modalities, f c(xc), 
f d(xd) and f l(xl), to be as similar as possible. Then, the shared loss is simply defined to 

s s 
minimize the pair-wise differences between the shared representations f c(xc), f d(xd) and 

s s 

f l(xl), such that: 
 

N N 
 

s i 
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N 

s i 2 
 

s i 

i=1 

s i 2 

+ βdl  
.

"f d(xd) − f l(x l)"2, (12) 

where 2 is the squared l2-norm. βcd , βcl and βdl are the weights of each pair-wise 

difference. 

Finally, inference in an EENReg model is given by y G(hm), where hm represents a 

multimodal feature embedding given by merging (either by concatenation or sum) all private 

and shared feature representations, such that: 

hm = 
.
f c(xc) � f c(xc) � f d(xd) � f d(xd) � f l (xl) � f l(xl)

Σ 
(13) 

i=1 i=1 

i=1 i=1 
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Fig. 10 Illustrative samples of 10 signs from the American Sign Language database [14, 15] 

 

 

 
6 Experimental results 

6.1 Dataset and evaluation protocol 
 

The experimental evaluation of the proposed methodologies was performed in a public 

Microsoft Kinect and Leap Motion hand gesture recognition database [14, 15]. This is a 

balanced dataset of 10 classes, representing 10 static gestures from the American Sign Lan- 

guage (see Fig. 10). Each sign was performed by 14 different people, and repeated 10 times, 

which results in a total of 1400 gestures. 

For each sign, data from both Leap Motion and Kinect were acquired together. The 

Kinect data include the colour images along with the corresponding depth maps. 

To maximize the usage of the data in the evaluation process, the performance of the mod- 

els was assessed using a k-fold cross validation scheme with signer independence, where  

k  5. Therefore, all performance measures reported throughout this section are the aver-  

age of their values computed in each split. This evaluation scheme, with k 5, yields at  

each split a training set of 1100 images from 10 signers and test set of 300 images from the 

other 3 signers. The training set is further divided, also with signer independence, in 80% 

for training and 20% for validation. 

 

6.2 Implementation details 
 

The parameters of the hand segmentation algorithm were empirically defined based on the 

available dataset and remained the same in all the experiments. That is, the number of Gaus- 

sian components of the skin and background colour models was set to 2 and 4, respectively. 

In addition, Tarea 75 and Tdepth 5. 

All deep models were implemented in Theano [2] and trained with the Nesterov’s Accel- 

erated Gradient Descent with momentum using a batch size of 50 samples. We used a 

learning rate with step decay, in which the initial learning rate was multiplied by 0.99 at 

each training epoch. The hyperparameters that are common to all the implemented models 

(i.e., the learning rate and the l2 coefficient) as well as the specific hyperparameters of the 

EENReg model (i.e., both Lprivate and Lshared coefficients) were optimized by means of a 
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Table 1 Hyperparameters sets 
 

 

Hyperparameters Acronym Set 
 

 

Leaning rate − {1e−03, 1e−04} 

l2-norm coefficient − {1e−04, 1e−05} Lprivat e 

coefficients  αc, αd , αl {1e−03, 5e−03, 1e−04} 

Lshared coefficients βcd , βcl, βdl {1e−03, 5e−03, 1e−04} 
 

 

 

 

grid search approach and cross-validation on the training set. The dropout rate was empiri- 

cally set as 0.4 for all the experiments. The range of values of the adopted hyperparameters’ 

grid search is presented in Table 1. For a fair comparison, it is important to note that the 

CNNs streams of all multimodal networks have the same architecture of the CNN model 

employed for single-modality classification. 

Regarding the parameters of the data augmentation scheme, the rotation angle θ was 

randomly  sampled  from     π/18,    π/36, 0, π/36, π/18  .  The  skew  parameters,  k1 and 

k2, were both randomly sampled from 0.1, 0, 0.1 . The scale parameter s was randomly 

sampled from five different resize factors 0.9, 0.95, 1, 1.05, 1.1 . Finally, the translation 

parameters t1 and t2 are randomly sampled integers from the interval 0, 5 . Note that these 

sets of values were selected carefully, so that the meaning of the sign is not changed after 

the transformation. 

The adopted SVM classifier consists in a multi-class SVM classifier based on the one- 

against-one approach, in which a nonlinear Gaussian Radial Basis Function (RBF) kernel 

is used. The parameters (C, γ) of the RBF kernel are estimated using a grid search and 

cross-validation on the training set. 

 

6.3 The potential of multimodal learning 
 

In order to assess the potential of multimodal learning in the SLR context, we computed the 

rate of test signs for which each single-modality method made a correct prediction while 

the others were wrong. 

As presented in Table 2, these results clearly demonstrate that there is a relative big 

potential to tackle the SLR problem via multi-modality. In particular, there is a higher com- 

plementarity between each Kinect modality (i.e., colour or depth) with the Leap Motion 

rather than between both Kinect modalities. For instance, there are 4.88% and 5.00% of test 

instances for which Leap Motion made correct predictions while colour and depth made 

incorrect ones, respectively. 

 

 

Table 2 The potential of 

multimodal learning, expressed 

by the rate of test instances for 

which modality B made correct 

predictions while modality A 

made incorrect ones 

Modality A Modality B Multi-modality potential (%) 

Colour Depth 3.88 

Colour Leap motion 4.88 

Depth Colour 4.25 

Depth Leap motion 5.00 

Leap motion Colour 15.50 

Leap motion Depth 15.25 
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Table 3 Experimental results of 

the single-modality approaches 

with and without data 

augmentation and background 

suppression. The results are 

presented in terms of 

classification accuracy (%). Bold 

number indicates the best method 

with the highest value of Acc 
 

6.4 Discussion 

 
 

Modality Acc (%) 

w/o background suppression w/o augmentation full 

Colour 90.12 82.61 93.17 

Depth 91.22 88.22 92.61 

Leap motion  − − 82.83 
 

 

 

The experimental results of the proposed single-modality and multimodal sign recognition 

methodologies are presented in Tables 3 and 4, respectively. The results are reported in 

terms of classification accuracy (Acc), which is given by the ratio between the number of 

correctly classified signs t and the total number of test signs n: Acc% t 100. 

A first observation, regarding single-modality approaches, is that both colour and depth 

outperform Leap Motion, with classification accuracies of 93.17%, 92.61% and 82.83%, 

respectively. However, it should be noticed that Leap Motion sign recognition does not 

require any kind of preprocessing in order to segment the hand from the background for 

feature extraction. 

To validate the impact of the proposed background suppression method and data augmen- 

tation scheme, both colour and depth CNN models were trained without them. As presented 

in Table 3, both colour and depth single-modality models performed consistently worse 

without background suppression and data augmentation, which clearly demonstrate their 

importance in the overall sign recognition performance. 

Table 4 Experimental results of the multimodal fusion methodologies. C, D and L denote colour, depth and 

leap motion modalities, respectively. The results are presented in terms of classification accuracy (%). Bold 

number indicates the best method with the highest value of Acc 

(a) Proposed multimodal fusion methods 

C + D + L 94.20 

Multi-step C + D 96.78 

C +D + L 97.11 

EENReg C + D 96.17 

 
Decision Average rule 

 
Confidence rule 

Learned rule 

(b) State-of-the-art methodologies 

Method Acc (%) 

Marin et al. 2014 [14] 91.28 

Marin et al. 2016 [15] 96.50 

Fusion Level Method Involved modalities Acc (%) 

Feature End-to-end C + D 92.80 

C + D + L 97.66 

C + D 95.78 

C + D + L 97.33 

C + D 95.78 

C + D + L 96.44 

C + D 95.83 

C + D + L 97.44 
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Table 5 The effect of each loss term in the EENReg model. Bold number indicates the best method with the 

highest value of Acc 
 

Method (modalities) Acc (%) 
 

 
w/o Lprivate w/o Lshared All loss terms 

EENReg (C + D + L) 97.06 96.88 97.66 

In the first column, the   private term was removed from the loss. In the second column, the    shared term   was 

removed from the loss. The third column is replicated from Table 4 as it includes all loss terms. The results 

are presented in terms of classification accuracy (%) 

 

The most interesting observation is that multimodal fusion often promotes an over-     

all improvement in the sign recognition accuracy - see Table 4. These results clearly 

demonstrate the complementarity between the three modalities. Typically, the classification 

accuracy increases as each modality is added to the recognition scheme. In particular, the 

novel end-to-end feature fusion model (EENReg), provides the best overall classification 

accuracy (Acc 97.66%). The EENReg clearly outperforms the other two implemented 

feature-level approaches, especially if compared with the traditional end-to-end feature 

fusion model. These results demonstrate that explicitly modeling what is unique and shared 

between modalities can improve the model’s ability to extract highly discriminative features 

for the sign classification. 

In order to assess the impact of the loss terms in the EENReg model, both private and 

shared constraints were removed from the loss, during the training, one at a time. These 

results are reported in Table 5 and, clearly, suggest that each loss term contributes to a better 

generalization of the model as its performance was consistently worse without them. 

Figure 11 shows the confusion matrix obtained for the best methodology, which is the 

proposed EENReg model. The classification accuracy is larger than 97% for all signs, with 

 

Fig. 11 Confusion matrix of the best implemented methodology, i.e., the EENReg model. Gray cells 

represent the true positives, while yellow cells correspond to the false positive rates greater than 2.5% 



 

 

 

the exceptions of signs G3 and G10. While G3 is sometimes misclassified as G7, G10 is a 

few times misclassified as G6. This happens because these two pairs of signs have a very 

similar shape between each other. For instance, G10 and G6 just differ from each other in 

one finger position - see Fig. 10. 

Finally, it is important to stress that the best implemented multimodal fusion approach 

(i.e., EENReg) outperformed both state-of-art methods [14] and [15], with an Acc of 

97.66% against 91.28% and 96.50%, respectively. 

 
 

7 Conclusions 
 

This paper addresses the topic of static SLR, by exploring multimodal learning techniques, 

using of data from 3 distinct modalities: (i) colour; (ii) depth, both from Kinect; and (iii) 

Leap Motion data. In this regard, single-modality approaches as well as different mul- 

timodal methods, to fuse them at different levels, are proposed. Multimodal techniques 

include feature-level and decision-level fusion techniques. 

Experimental results suggest that both Kinect modalities are more discriminative than the 

Leap Motion data. However, the most interesting observation is that, in general, multimodal 

learning techniques outperform single-modality methods. 

Our main contribution is a novel end-to-end feature-level deep neural network that 

explicitly models private representations that are specific to each modality and shared fea- 

ture representations that are similar between them. By imposing such constraints in the 

learning process, the model is able to jointly learn both modality-specific and modality- 

shared features and outperform the state-of-the-art multimodal approaches. As future work, 

it is expected to extend the proposed methodologies for dynamic signs (i.e., for video). 

 
 

 
References 

 
1. Adithya V, Vinod PR, Gopalakrishnan U (2013) Artificial neural network based method for indian sign 

language recognition. In: 2013 IEEE conference on information communication technologies (ICT), pp 

1080–1085. https://doi.org/10.1109/CICT.2013.6558259 

2. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow IJ, Bergeron A, Bouchard N, Bengio Y (2012) 

Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning NIPS 

2012 Workshop 

3. Bousmalis K, Trigeorgis G, Silberman N, Krishnan D, Erhan D (2016) Domain separation networks. In: 

lee DD, Sugiyama M, Luxburg UV, Guyon I, Garnett R (eds) Advances in neural information processing 

systems 29, pp 343–351 

4. Cooper H, Bowden R (2007) Large lexicon detection of sign language. Springer, Berlin, pp 88–97 

5. den Bergh MV, Gool LV (2011) Combining rgb and tof cameras for real-time 3d hand gesture interaction. 

In: 2011 IEEE workshop on applications of computer vision (WACV), pp 66–72 



 

 

 

6. Dominio F, Donadeo M, Zanuttigh P (2014) Combining multiple depth-based descriptors for hand 

gesture recognition. Pattern Recogn Lett 50:101–111 

7. Ferreira PM, Cardoso JS, Rebelo A (2017) Multimodal learning for sign language recognition. In: Iberian 

conference on pattern recognition and image analysis, pp 313–321. Springer 

8. Geng Y, Zhang G, Li W, Gu Y, Liang RZ, Liang G, Wang J, Wu Y, Patil N, Wang JY (2017) A novel 

image tag completion method based on convolutional neural transformation. In: Lintas A, Rovetta S, 

Verschure PF, Villa AE (eds) Artificial neural networks and machine learning – ICANN 2017. Springer 

International Publishing, Cham, pp 539–546 
9. Hamid ATZ, Wirza RR, Iqbal SM, Suhaiza SP (2014) Skin segmentation using yuv and rgb color spaces. 

J Inf Process Syst 10(2):283 
10. Huang C, Loy CC, Tang X (2016) Local similarity-aware deep feature embedding. In: Lee DD, Sugiyama 

M, Luxburg UV, Guyon I, Garnett R (eds) Advances in neural information processing systems 29, pp 

1262–1270 
11. Kurakin A, Zhang Z, Liu Z (2012) A real time system for dynamic hand gesture recognition with a 

depth sensor. In: 2012 Proceedings of the 20th European signal processing conference (EUSIPCO), pp 

1975–1979 

12. Lenz I, Lee H, Saxena A (2015) Deep learning for detecting robotic grasps. Int J Robot Res 34(4-5):705– 

724. https://doi.org/10.1177/0278364914549607 

13. Liang R, Liang G, Li W, Li Q, Wang JJ (2016) Learning convolutional neural network to maximize 

pos@top performance measure. arXiv:1609.08417 

14. Marin G, Dominio F, Zanuttigh P (2014) Hand gesture recognition with leap motion and kinect devices. 

In: 2014 IEEE International conference on image processing (ICIP), pp 1565–1569 
15. Marin G, Dominio F, Zanuttigh P (2016) Hand gesture recognition with jointly calibrated 

leap motion and depth sensor. Multimedia Tools and Applications 75(22):14,991–15,015. 

https://doi.org/10.1007/s11042-015-2451-6 

16. Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY (2011) Multimodal deep learning. In: International 

conference on machine learning (ICML), vol 6 
17. Potter LE, Araullo J, Carter L (2013) The leap motion controller: a view on sign language. In: Pro- 

ceedings of the 25th Australian computer-human interaction conference: augmentation, application, 

innovation, collaboration, OzCHI ’13. ACM, New York, pp 175–178 

18. Ramachandram D, Taylor GW (2017) Deep multimodal learning: a survey on recent advances and trends. 

IEEE Signal Proc Mag 34(6):96–108. https://doi.org/10.1109/MSP.2017.2738401 

19. Schroff F, Kalenichenko D, Philbin J (2015) Facenet: a unified embedding for face recognition and 

clustering. In: The IEEE conference on computer vision and pattern recognition (CVPR) 
20. Sohn K, Shang W, Lee H (2014) Improved multimodal deep learning with variation of information. 

In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ (eds) Advances in neural 

information processing systems 27, pp 2141–2149. Curran Associates, Inc. http://papers.nips.cc/paper/ 

5279-improved-multimodal-deep-learning-with-variation-of-information.pdf 

21. Srinivas S, Sarvadevabhatla RK, Mopuri KR, Prabhu N, Kruthiventi S, Radhakrishnan VB (2016) A 

taxonomy of deep convolutional neural nets for computer vision. Frontiers in Robotics and AI 2(36):1–13 

22. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to 

prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958. http://jmlr.org/papers/v15/ 

srivastava14a.html 

23. Su F, Wang J (2018) Domain transfer convolutional attribute embedding. arXiv:1803.09733 

24. Wang A, Cai J, Lu J, Cham TJ (2015) Mmss: Multi-modal sharable and specific feature learning for rgb-d 

object recognition. In: 2015 IEEE International conference on computer vision (ICCV), pp 1125–1133 

25. Wang A, Lu J, Cai J, Cham TJ, Wang G (2015) Large-margin multi-modal deep learning for rgb-d object 

recognition. IEEE Trans Multimedia 17(11):1887–1898. https://doi.org/10.1109/TMM.2015.2476655 

26. Wang J, Shi L, Wang H, Meng J, Wang JJ, Sun Q, Gu Y (2016) Optimizing top precision performance 

measure of content-based image retrieval by learning similarity function. arXiv:1604.06620 

27. Wang JJY, Wang Y, Zhao S, Gao X (2015) Maximum mutual information regularized classification. 

Eng Appl Artif Intell 37:1–8. https://doi.org/10.1016/j.engappai.2014.08.009. http://www.sciencedirect. 

com/science/article/pii/S0952197614002085 

28. Wu Z, Jiang YG, Wang J, Pu J, Xue X (2014) Exploring inter-feature and inter-class relationships with 

deep neural networks for video classification. In: Proceedings of the 22Nd ACM International confer- 

ence on multimedia, MM ’14. ACM, New York, pp 167–176. https://doi.org/10.1145/2647868.2654931. 

http://doi.acm.org/10.1145/2647868.2654931 

29. Yang H (2015) Sign language recognition with the kinect sensor based on conditional random fields. 

Sensors 15(1):135–147. https://doi.org/10.3390/s150100135 

30. Zhang G, Liang G, Li W, Fang J, Wang J, Geng Y, Wang JY (2017) Learning convolutional ranking- 

score function by query preference regularization. In: Yin H, Gao Y, Chen S, Wen Y, Cai G, Gu T, Du 



 

 

 

J, Tallón-Ballesteros AJ, Zhang M (eds) Intelligent data engineering and automated learning – IDEAL 

2017. Springer International Publishing, Cham, pp 1–8 

31. Zhang S, Wang H, Huang W (2017) Two-stage plant species recognition by local mean clustering and weighted 

sparse representation classification. Clust Comput 20(2):1517–1525. https://doi.org/10.1007/s10586-017- 

0859-7 

 


