Skip to main content
Log in

Connected graph decomposition for spectral clustering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new spectral clustering method based on local Principal Component Analysis (PCA) and connected graph decomposition. Specifically, our method randomly select centroids of the data set to take global structure of data points into consideration, and then uses local PCA to preserve the local structure of data points for constructing the similarity matrix. Furthermore, our method employs the connected graph decomposition to partition the resulting similarity matrix to group data points into clusters. Experimental analysis on 12 UCI data sets showed that our proposed method outperformed the state-of-the-art clustering methods in terms of clustering performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://archive.ics.uci.edu/ml/index.php.

References

  1. Arias-Castro E, Lerman G, Zhang T (2013) Spectral clustering based on local pca. J Mach Learn Res 18(9):1–57

    MathSciNet  MATH  Google Scholar 

  2. Cong L, Zhu X (2017) Unsupervised feature selection via local structure learning and sparse learning. https://doi.org/10.1007/s11042-017-5381-7, vol 11

    Article  Google Scholar 

  3. Elhamifar E, Vidal R (2013) Sparse subspace clustering:Algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  4. Fei W, Jimeng S (2015) Survey on distance metric learning and dimensionality reduction in data mining. Kluwer Academic Publishers, South Holland

    MATH  Google Scholar 

  5. Fodor IK (2002) A survey of dimension reduction techniques. Neoplasia 7 (5):475–485

    Google Scholar 

  6. Geach JE (2012) Unsupervised self-organized mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys. Mon Not R Astron Soc 419(3):2633–2645

    Article  Google Scholar 

  7. Gao L, Guo Z, Zhang H, Xu X, Shen HT (2017) Video captioning with attention-based LSTM and semantic consistency. IEEE Trans Multimed 19(9):2045–2055

    Article  Google Scholar 

  8. Hartigan JA (1979) A k-means clustering algorithm. Appl Stat 28(1):100–108

    Article  Google Scholar 

  9. Hu R, Zhu X, Cheng D, He W, Yan Y, Song J, Zhang S (2017) Graph self-representation method for unsupervised feature selection. Neurocomputing 220:130–137

    Article  Google Scholar 

  10. Jolliffe IT (1986) Principal component analysis. J Mark Res 87(100):513

    Google Scholar 

  11. Kaufmann L, J Rousseeuw P (1987) Clustering by means of medoids, pp 405–416

  12. Laio A, Rodriguez A (2016) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496

    Google Scholar 

  13. Li Y, Zhang S, Cheng D, He W, Wen G, Xie Q (2016) Spectral clustering based on hypergraph and self-re-presentation. Multimed Tools Appl 76(16):1–18

    Google Scholar 

  14. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  15. Lu CY, Min H, Zhao ZQ, Zhu L, Huang DS, Yan S (2012) Robust and efficient subspace segmentation via least squares regression. In: ECCV, pp 347–360

  16. McQueen J (1967) Some methods of classification and analysis of multivariate observations, pp 281–297

  17. Pang Y, Zhang L, Liu Z, Yu N, Li H (2005) Neighborhood preserving projections (npp): a novel linear dimension reduction method. Lect Notes Comput Sci 3644:117–125

    Article  Google Scholar 

  18. Riffenburgh RH, Clunies-Ross CW (1960) Linear discriminant analysis. Chicago 3(6):27–33

    MATH  Google Scholar 

  19. Rokach L, Maimon O (2005) Clustering methods. Data Mining & Knowledge Discovery Handbook 3(3):321–352

    Article  Google Scholar 

  20. Roweis Sam T, Saul Lawrence K (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  21. Scholkopf B, Smola A, M1ller K-R (2003) Kernel principal component analysis. Lect Notes Comput Sci 27(4):555–559

    Google Scholar 

  22. Shashanka M (2010) A privacy preserving framework for Gaussian mixture models. In: ICDM, pp 499–506

  23. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  24. Song J, Gao L, Nie F, Shen HT, Yan Y, Sebe N (2016) Optimized graph learning using partial tags and multiple features for image and video annotation. IEEE Trans Image Process 25(11):4999–5011

    Article  MathSciNet  Google Scholar 

  25. Song J, Shen HT, Wang J, Huang Z, Sebe N, Wang J (2016) A distance-computation-free search scheme for binary code databases. IEEE Trans Multimed 18(3):484–495

    Article  Google Scholar 

  26. Song J, Gao L, Li L, Zhu X, Sebe N (2018) Quantization-based hashing: a general framework for scalable image and video retrieval. Pattern Recogn 75:175–187

    Article  Google Scholar 

  27. Tenenbaum JB, Silva VD, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  28. Tran a TN, Daszykowski M, Drab K (2012) Revised dbscan algorithm to cluster data with dense adjacent clusters. Chemometr Intell Lab Syst 120(2013):92–96

    Google Scholar 

  29. Wang S, Yuan X, Yao T, Yan S, Shen J (2011) Efficient subspace segmentation via quadratic programming. In: AAAI, pp 519–524

  30. Xiaofeng Z, Xuelong L, Shichao Z, Chunhua J, Xindong W (2017) Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans Neural Netw Learn Syst 28(6):1263–1275

    Article  MathSciNet  Google Scholar 

  31. Yang MH (2003) Discriminant isometric mapping for face recognition. In: ICVS, pp 470–480

  32. Yang Y, Duan Y, Wang X, Huang Z, Xie N, Shen HT (2018) Hierarchical multi-clue modelling for poi popularity prediction with heterogeneous tourist information. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2018.2842190

    Article  Google Scholar 

  33. Zhao Q, Jin J, Wang X, Cichocki A (2012) A novel bci based on erp components sensitive to configural processing of human faces. J Neural Eng 9(2):026018

    Article  Google Scholar 

  34. Zhang Y, Jin J, Qing X, Wang B, Wang X (2012) Lasso based stimulus frequency recognition model for ssvep bcis. Biomed Signal Process Control 7(2):104–111

    Article  Google Scholar 

  35. Zhang S, Li X, Zong M, Zhu X, Wang R (2018) Efficient knn classification with different numbers of nearest neighbors. IEEE Trans Neural Netw Learn Syst 29(5):1774–1785

    Article  MathSciNet  Google Scholar 

  36. Zheng W, Zhu X, Zhu Y, Hu R, Lei C (2017) Dynamic graph learning for spectral feature selection. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-017-5272-y

    Article  Google Scholar 

  37. Zheng W, Zhu X, Wen G, Zhu Y, Yu H, Gan J (2018) Unsupervised feature selection by self-paced learning regularization. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2018.06.029

  38. Zhu Y, Lucey S (2015) Convolutional sparse coding for trajectory reconstruction. IEEE Trans Pattern Anal Mach Intell 37(3):529–540

    Article  Google Scholar 

  39. Zhu X, Zhang S, Jin Z, Zhang Z, Zhuoming X (2011) Missing value estimation for mixed-attribute data sets. IEEE Trans Knowl Data Eng 23(1):110–121

    Article  Google Scholar 

  40. Zhu X, Zhang L, Huang Z (2014) A sparse embedding and least variance encoding approach to hashing. IEEE Trans Image Process 23(9):3737–3750

    Article  MathSciNet  Google Scholar 

  41. Zhu X, Li X, Zhang S (2016) Block-row sparse multiview multilabel learning for image classification. IEEE Trans Cybern 46(2):450–461

    Article  Google Scholar 

  42. Zhu X, Li X, Zhang S, Xu Z, Yu L, Wang C (2017) Graph pca hashing for similarity search. IEEE Trans Multimed 19(9):2033–2044

    Article  Google Scholar 

  43. Zhu X, Suk H-Il, Huang H, Shen D (2017) Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans Big Data 3(4):405–414

    Article  Google Scholar 

  44. Zhu X, Suk H ll, Wang L, Lee S-W, Shen D (2017) A novel relational regularization feature selection method for joint regression and classification in ad diagnosis. Med Image Anal 38:205–214

    Article  Google Scholar 

  45. Zhu Y, Kim M, Zhu X, Yan J, Kaufer D, Wu G (2017) Personalized diagnosis for alzheimer’s disease. In: MICCAI, pp 205–213

  46. Zhu Y, Zhu X, Kim M, Kaufer D, Wu G (2017) A novel dynamic hyper-graph inference framework for computer assisted diagnosis of neuro-diseases. In: IPMI, pp 158–169

  47. Zhu X, Zhang S, Hu R, Zhu Y, Song J (2018) Local and global structure preservation for robust unsupervised spectral feature selection, pp 517–529

    Article  Google Scholar 

  48. Zhu X, Zhang S, Li Y, Zhang J, Yang L, Fang Y (2018) Low-rank sparse subspace for spectral clustering. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2018.2858782

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the China Key Research Program (Grant No: 2016YFB1000905); the Natural Science Foundation of China (Grants No: 61876046, 61573270 and 61672177); the Project of Guangxi Science and Technology (GuiKeAD17195062); the Guangxi Natural Science Foundation (Grant No: 2015GXNSFCB139011); the Guangxi Collaborative Innovation Center of Multi-Source Information Integration and Intelligent Processing; the Guangxi High Institutions Program of Introducing 100 High-Level Overseas Talents; and the Research Fund of Guangxi Key Lab of Multisource Information Mining & Security (18-A-01-01).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, T., Zhu, X. & Du, T. Connected graph decomposition for spectral clustering. Multimed Tools Appl 78, 33247–33259 (2019). https://doi.org/10.1007/s11042-018-6643-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6643-8

Keywords

Navigation