Skip to main content
Log in

Re-ranking pedestrian re-identification with multiple Metrics

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Pedestrian re-identification (re-ID) is a video surveillance technology for specific pedestrians in non-overlapping multi-camera scenes. However, due to the influence of dramatic changes in perspectives and pedestrian occasions, it is still a huge challenge to find a stable, reliable algorithm in high accuracy rate. In this paper, to increase the robustness and performance of re-ID, we proposed a re-ID method by re-ranking the refined re-ID results (i.e. initial lists) gotten from the kernel-Local Fisher Discriminant Analysis (kLFDA) and Marginal Fisher Analysis (MFA) metrics, which can improve the probability of the correct target on the initial result lists and also enhance the robustness. During the process of re-ranking, in order to distinguish pedestrians in high similarity, a rigorous distance constraint model named Perspective Distance Model (PDM) is designed to further reduce the intra-class variations and increase the distance of inter-class variations. By using the PDM, the concise results gotten from the kLFDA and MFA metrics are re-ranked in order to further recognize different individuals in high similarity and improve the re-ID rate. Experimental results on seven challenging re-ID datasets (VIPeR, CUHK01, Prid2011, iLIDS, CUHK03, Market-1501and DukeReID) show that the performance of proposed method is high and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bai S, Bai X (2016) Sparse contextual activation for efficient visual re-ranking. IEEE Trans Image Process 25(3):1056–1069. https://doi.org/10.1109/TIP.2016.2514498

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazzani, Loris et al (2010) Multiple-Shot Person Re-identification by HPE Signature. International Conference on Pattern Recognition IEEE Computer Society, p 1413-1416. https://doi.org/10.1109/ICPR.2010.349

  3. Chen YC et al (2016) An asymmetric distance model for cross-view feature mapping in person re-identification. IEEE Trans Circuits Syst Video Technol 99-105. https://doi.org/10.1109/TCSVT.2016.2515309

    Article  Google Scholar 

  4. Chen W, Chen X, Zhang J, Huang K (2017) Beyond triplet loss: a deep quadruplet network for person re-identification. IEEE Conf Comput Vis Pattern Recognit 1320-1329. https://doi.org/10.1109/CVPR.2017.145

  5. Cheng D, Gong Y, Zhou S, Wang J, Zheng N (2016) Person re-identification by multi-channel parts-based CNN with improved triplet loss function. IEEE Conf Comput Vis Pattern Recognit 1335-1344. https://doi.org/10.1109/CVPR.2016.149

  6. Cheng K, Hui K, Zhan Y et al (2017) Sparse representations based distributed attribute learning for person re-identification. Multimed Tools Appl 3:1–23. https://doi.org/10.1007/s11042-017-4967-4

    Article  Google Scholar 

  7. Cheng D, Gong Y, Chang X, Shi W, Hauptmann A, Zheng N (2018) Deep feature learning via structured graph laplacian embedding for person re-identification. Pattern Recogn 82:94–104. https://doi.org/10.1016/j.patcog.2018.05.007

    Article  Google Scholar 

  8. Cui J, Liu Y, Xu Y et al (2013) Tracking generic human motion via fusion of low- and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst 43(4):996–1002. https://doi.org/10.1109/TSMCA.2012.2223670

    Article  Google Scholar 

  9. Deng W, Zheng L, Kang G, Yang Y, Ye Q, Jiao J (2017) Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. Computer Vision and Pattern Recognition arXiv:1711.07027

  10. Fan H, Zheng L, Yang Y (2017) Unsupervised person re-identification: clustering and fine-tuning. Computer Vision and Pattern Recognition. DOI: arXiv:1705.10444

  11. Farenzena M et al (2010) Person re-identification by symmetry-driven accumulation of local features. Computer Vision and Pattern Recognition, p 2360-2367. https://doi.org/10.1109/CVPR.2010.5539926

  12. Fedorov I, Giri R, Rao B D et al (2017) Relevance subject machine: a novel person re-identification framework. Computer Vision and Pattern Recognition. arXiv:1703.10645

  13. Gou M, Karanam S, Liu W, Camps O, Radke R J (2017) DukeMTMC4ReID: a large-scale multi-camera person re-identification dataset. Computer Vision and Pattern Recognition Workshops, p 1425-1434. https://doi.org/10.1109/CVPRW.2017.185

  14. Hirzer M (2012) Large scale metric learning from equivalence constraints. IEEE Conference on Computer Vision and Pattern Recognition, p 2288-2295. https://doi.org/10.1109/CVPR.2012.6247939

  15. Hu HM, Fang W, Zeng G et al (2016) A person re-identification algorithm based on pyramid color topology feature. Multimed Tools Appl 76(9):1–15. https://doi.org/10.1007/s11042-016-4070-2

    Article  Google Scholar 

  16. Huo Z, Chen Y, Hua C (2015) Person re-identification based on multi-directional saliency metric learning. International Conference on Computer Vision Systems, p 45-55. https://doi.org/10.1007/978-3-319-20904-3_5

    Google Scholar 

  17. Jiang M, Yuan Y, Wang Q (2017) Asymmetric cross-view dictionary learning for person re-identification. IEEE International Conference on Acoustics, Speech and Signal Processing, p 1228-1232. https://doi.org/10.1109/ICASSP.2017.7952352

  18. Karanam S, Gou M, Wu Z et al (2017) A comprehensive evaluation and benchmark for person re-identification: features, metrics, and datasets. Computer Vision and Pattern Recognition. arXiv:1605.09653

  19. Leng Q, Hu R, Liang C et al (2015) Person re-identification with content and context re-ranking. Multimed Tools Appl 74(17):6989–7014. https://doi.org/10.1007/s11042-014-1949-7

    Article  Google Scholar 

  20. Li W, Wang X (2013) Locally aligned feature transforms across views. Computer Vision and Pattern Recognition, p 3594-3601. https://doi.org/10.1109/CVPR.2013.461

  21. Li D, Chen X, Zhang Z et al (2017) Learning deep context-aware features over body and latent parts for person re-identification. IEEE Conference on Computer Vision and Pattern Recognition, p 7398-7407. https://doi.org/10.1109/CVPR.2017.782

  22. Liao S, Li S Z (2015) Efficient PSD Constrained Asymmetric Metric Learning for Person Re-identification. IEEE International Conference on Computer Vision, p 3685–3693. https://doi.org/10.1109/ICCV.2015.420

  23. Liao S, Hu Y, Zhu X et al (2015) Person re-identification by Local Maximal Occurrence representation and metric learning. Computer Vision and Pattern Recognition 2197-2206. https://doi.org/10.1109/CVPR.2015.7298832

  24. Lisanti G, Masi I, Bagdanov AD et al (2015) Person re-identification by iterative re-weighted sparse ranking. IEEE Trans Pattern Anal Mach Intell 37(8):1629–1642. https://doi.org/10.1109/TPAMI.2014.2369055

    Article  Google Scholar 

  25. Lisanti G, Karaman S, Masi I (2017) Multichannel-Kernel Canonical Correlation Analysis for Cross-View Person Re-identification. ACM Trans Multimed Comput 13(2). https://doi.org/10.1145/3038916

    Article  Google Scholar 

  26. Liu Y, Nie L, Han L, et al (2015) Action2Activity: recognizing complex activities from sensor data. International Conference on Artificial Intelligence. AAAI Press, p 1617-1623

  27. Liu Y, Zhang L, Nie L et al (2016) Fortune Teller: Predicting Your Career Path. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), p 201-207

  28. Liu Y, Nie L, Liu L et al (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115. https://doi.org/10.1016/j.neucom.2015.08.096

    Article  Google Scholar 

  29. Liu Y, Zheng Y , Liang Y, Liu S, Rosenblum ADS (2016) Urbanwater quality prediction based on multi-task multi-view learning. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, p 2576–2582

  30. Liu L, Cheng L, Liu Y, et al. Recognizing complex activities by a probabilistic interval-based model. Thirtieth AAAI Conference on Artificial Intelligence, p 1266-1272

  31. Ma X, Zhu X, Gong S et al (2017) Person re-identification by unsupervised video matching. Pattern Recogn 65(C):197–210. https://doi.org/10.1016/j.patcog.2016.11.018

    Article  Google Scholar 

  32. Matsukawa T, Okabe T, Suzuki E et al (2016) Hierarchical Gaussian descriptor for person re-identification. Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, p 1363-1372. https://doi.org/10.1109/CVPR.2016.152

  33. Mignon A (2012) PCCA: a new approach for distance learning from sparse pairwise constraints. Computer Vision and Pattern Recognition 2666-2672. https://doi.org/10.1109/CVPR.2012.6247987

  34. Paisitkriang S, Wu L, Shen C et al (2017) Structured learning of metric ensembles with application to person re-identification. Computer Vision & Image Understanding 156(C) 51-65 DOI: https://doi.org/10.1016/j.cviu.2016.10.015

    Article  Google Scholar 

  35. Pedagadi S, Orwell J, Velastin S et al (2013) Local fisher discriminant analysis for pedestrian re-identification. IEEE Conference on Computer Vision and Pattern Recognition, 3318-3325. https://doi.org/10.1109/CVPR.2013.426

  36. Prates R (2016) Kernel hierarchical PCA for person re-identification. Int Conf Pattern Recog 21(3):1061–1066. https://doi.org/10.1109/ICPR.2016.7899944

    Article  Google Scholar 

  37. Prosser B, Zheng W, Gong S, Xiang T (2010) Person re-identification by support vector ranking. British Machine Vision Conference BMVC, p 1-11. https://doi.org/10.5244/C.24.21

  38. Qin D, Gammeter S, Bossard L et al (2011) Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors. Computer Vision and Pattern Recognition, p 777-784. https://doi.org/10.1109/CVPR.2011.5995373

  39. Shet V, Khamis S, Kuo C H (2013) Person re-identification using semantic color names and RankBoost. IEEE Workshop on Applications of Computer Vision, p 281-287. https://doi.org/10.1109/WACV.2013.6475030

  40. Si J, Zhang H, Li CG et al (2017) Spatial pyramid-based statistical features for person re-identification: a comprehensive evaluation. IEEE Transactions on Systems Man & Cybernetics Systems 1-15. https://doi.org/10.1109/TSMC.2016.2645660

    Article  Google Scholar 

  41. Su C, Yang F, Zhang S et al (2015) Multi-task learning with low rank attribute embedding for person re-identification. IEEE International Conference on Computer Vision, p 3739-3747. https://doi.org/10.1109/ICCV.2015.426

  42. Su C, Yang F, Zhang S, Tian Q, Davis LS, Gao W (2018) Multi-task learning with low rank attribute embedding for multi-camera person re-identification. IEEE Trans Pattern Anal Mach Intell 1167-1181. https://doi.org/10.1109/TPAMI.2017.2679002

    Article  Google Scholar 

  43. Ustinova E, Ganin Y, Lempitsky V (2017) Multiregion bilinear convolutional neural networks for person re-identification. AVSS 48(10):2993–3003. https://doi.org/10.1109/AVSS.2017.8078460

    Article  Google Scholar 

  44. Varior RR, Haloi M, Wang G (2016) Gated Siamese convolutional neural network architecture for human re-identification. European Conference on Computer Vision, p 791-808. https://doi.org/10.1007/978-3-319-46484-8_48

    Chapter  Google Scholar 

  45. Varior RR, Shuai B, Lu J, Xu D, Wang G (2016) A Siamese long short-term memory architecture for human re-identification. Computer Vision ECCV, p 135-153. https://doi.org/10.1007/978-3-319-46478-7_9

    Google Scholar 

  46. Wang T, Gong S, Zhu X, Wang S (2014) Person re-identification by video ranking. Comput Vis ECCV 14:688–703. https://doi.org/10.1007/978-3-31910593-2_45

    Article  Google Scholar 

  47. Wang G, Lin L, Ding S et al (2016) DARI: Distance metric And Representation Integration for Person Verification. Computer Vision and Pattern Recognition. arXiv e-print (arXiv:1604.04377)

  48. Wang Q, Wan J, Yuan Y (2017) Deep Metric Learning for Crowdedness Regression. IEEE Transactions on Circuits & Systems for Video Technology, p 1-11. https://doi.org/10.1109/TCSVT.2017.2703920

    Article  Google Scholar 

  49. Wang Q, Wan J, Yuan Y (2018) Locality constraint distance metric learning for traffic congestion detection. Pattern Recogn 75:272–281. https://doi.org/10.1016/j.patcog.2017.03.030

    Article  Google Scholar 

  50. Xie Y, Yu H, Gong X et al (2017) Adaptive metric learning and probe-specific re-ranking for person re-identification. IEEE Signal Process Lett 24(6):853–857. https://doi.org/10.1109/LSP.2017.2679208

    Article  Google Scholar 

  51. Xiong F, Gou M, Camps O et al (2014) Person re-identification using kernel-based metric learning methods. Lect Notes Comput Sci 8695:1–16. https://doi.org/10.1007/978-3-319-10584-0_1

    Article  Google Scholar 

  52. Xu X, Li W, Xu D (2015) Distance metric learning using privileged information for face verification and person re-identification. IEEE Trans Neural Netw Learn Syst 26(12):3150–3162. https://doi.org/10.1109/TNNLS.2015.2405574

    Article  MathSciNet  Google Scholar 

  53. Xue M, Liu W, Liu X (2013) A novel weighted fuzzy LDA for face recognition using the genetic algorithm. Neural Comput Applic 22(7-8):1531–1541. https://doi.org/10.1007/s00521-012-0962-x

    Article  Google Scholar 

  54. Yang Y, Yang J, Yan J et al (2014) Salient color names for person re-identification. European Conference on Computer Vision, p 536-551. https://doi.org/10.1007/978-3-319-10590-1_35

    Google Scholar 

  55. Yang Y, Liao S, Lei Z et al (2017) Learning Efficient Image Representation for Person Re-identification. arXiv:1707.02319

  56. Yang X, Wang M, Hong R et al (2017) Enhancing person re-identification in a self-trained subspace. ACM Trans Multimed Comput Commun Appl 13(3). https://doi.org/10.1145/3089249

    Article  Google Scholar 

  57. Ye M, Liang C, Wang Z et al (2015) Ranking optimization for person re-identification via similarity and dissimilarity. ACM International Conference on Multimedia, p 1239-1242. https://doi.org/10.1145/2733373.2806326

  58. Ye M, Chen J, Leng Q et al (2015) Coupled-view based ranking optimization for person re-identification. International Conference on Multimedia Modeling 8935:105–117. https://doi.org/10.1007/978-3-319-14445-0_10

    Article  Google Scholar 

  59. Ye M, Liang C, Yu Y et al (2016) Person re-identification via ranking aggregation of similarity pulling and dissimilarity pushing. IEEE Trans Multimedia 2553-2566. https://doi.org/10.1109/TMM.2016.2605058

    Article  Google Scholar 

  60. You J, Wu A, Li X et al (2016) Top-push video-based person re-identification. Computer Vision and Pattern Recognition 1345-1353.arXiv e-print (arXiv:1604.08683)

  61. Zhang L, Xiang T, Gong S (2016) Learning a discriminative null space for person re-identification. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, p 1239-1248. https://doi.org/10.1109/CVPR.2016.139

  62. Zhang L, Xiang T, Gong S (2016) Learning a discriminative null space for person re-identification. Computer Vision and Pattern Recognition, 1239-1248. https://doi.org/10.1109/CVPR.2016.139

  63. Zhao R, Ouyang W, Wang X (2013) Unsupervised salience learning for person re-identification. Computer Vision and Pattern Recognition 3586-3593. https://doi.org/10.1109/CVPR.2013.460

  64. Zhao R, Ouyang W, Wang X (2017) Person re-identification by saliency learning. IEEE Trans Pattern Anal Mach Intell 39(2):356–370. https://doi.org/10.1109/TPAMI.2016.2544310

    Article  Google Scholar 

  65. Zhen L, Chang S, Liang F et al (2013) Learning locally-adaptive decision functions for person verification. IEEE Conference on Computer Vision and Pattern Recognition, p 3610-3617. https://doi.org/10.1109/CVPR.2013.463

  66. Zheng WS, Gong S, Xiang T (2013) Re-identification by relative distance comparison. IEEE Trans Pattern Anal Mach Intell 35(3):653–658. https://doi.org/10.1109/TPAMI.2012.138

    Article  Google Scholar 

  67. Zhong Z, Zheng L, Cao D et al (2017) Re-ranking person re-identification with k-reciprocal encoding. Computer Vision and Pattern Recognition. arXiv e-print (arXiv:1701.08398)

Download references

Acknowledgements

This work was granted by Tianjin Sci-tech Planning Projects (Grant No. 14RCGFGX00846), the Natural Science Foundation of Hebei Province, China (Grant No. F2015202239), Tianjin Sci-tech Planning Projects (Grant No. 15ZCZDNC00130) and Joint Doctoral Training Foundation of HEBUT (Grant No. 2017GN0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

(Our code is available: https://github.com/gengshuze/RPDM_RE-ID.git).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, S., Yu, M., Liu, Y. et al. Re-ranking pedestrian re-identification with multiple Metrics. Multimed Tools Appl 78, 11631–11653 (2019). https://doi.org/10.1007/s11042-018-6654-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6654-5

Keywords

Navigation