Skip to main content
Log in

The linear prediction vector quantization for hyperspectral image compression

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a hyperspectral image compression method is proposed. It is based on spectral clustering, linear prediction and the vector quantization (VQ). Since the hyperspectral image has stronger spectral correlation than spatial correlation, the spectral clustering and model of linear prediction are introduced to reduce the spectral correlation. In the proposed method, spectral clustering algorithm of K-means is employed, and the centroids of clustered results are used as reference bands, then the reference bands are employed in the model of linear prediction to compute the prediction error, finally the prediction error is encoded by VQ. The experiments results using AVIRIS images are compared to IVQ and AR + SubPCA+JPEG2000 algorithm, the results show that our proposed algorithm outperforms other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aiazzi B et al (1999) Lossless compression of multi/hyper-spectral imagery based on a 3-D fuzzy prediction. IEEE Trans Geosci Remote Sens 37(5):2287–2294

    Article  Google Scholar 

  2. Akam Bita IP, Barret M, Pham D (2010) On optimal transforms in lossy compression of multicomponent images with JPEG2000. Signal Process 90(3):759–773

    Article  Google Scholar 

  3. Amrani N et al (2016) Regression wavelet analysis for lossless coding of remote-sensing data. IEEE Trans Geosci Remote Sens 54(9):1–12

    Article  Google Scholar 

  4. Baker RL, Tse YT (1988) Compression of high spectral resolution imagery. In: Proceedings of SPIE, pp 255–264

  5. Beerten J, Blanes I, Serra-Sagristà J (2015) A fully embedded two-stage coder for hyperspectral near-lossless compression. IEEE Geosci Remote Sens Lett 12(8):1775–1779

    Article  Google Scholar 

  6. Blanes I, Serra-Sagristà J (2009) Clustered reversible-KLT for progressive lossy-to-lossless 3d image coding. In: Proceedings of the IEEE Data Compression Conference, pp 233–242

  7. Blanes I, Serra-Sagristà J (2011) Pairwise orthogonal transform for spectral image coding. IEEE Trans Geosci Remote Sens 49(3):961–972

    Article  Google Scholar 

  8. Blanes I, Serra-Sagrista J, Marcellin M, Bartrina-Rapesta J (2012) Divide-and-conquer strategies for hyperspectral image processing: a review of their benefits and advantages. IEEE Signal Process Mag 29(3):71–81

    Article  Google Scholar 

  9. Canta GR, Poggi G (1997) Compression of multispectral images by address-predictive vector quantization. Signal Process Image Commun 11:147–159

    Article  Google Scholar 

  10. Christopoulos C, Skodras A, Ebrahimi T (2000) The JPEG2000 still image coding system: an overview. IEEE Trans Consum Electron 46(4):1103–1127

    Article  Google Scholar 

  11. Ding M, Fan G (2015) Multilayer joint gait-pose manifolds for human gait motion modeling. IEEE Trans Cybern 45(11):2413–2424

    Article  Google Scholar 

  12. Ding M, Fan G (2016) Articulated and generalized Gaussian kernel correlation for human pose estimation. IEEE Trans Image Process 25(2):776–789

    Article  MathSciNet  Google Scholar 

  13. Dragotti PL, Poggi G, Ragozini ARP (2000) Compression of multispectral images by three-dimensional SPIHT algorithm. IEEE Trans Geosci Remote Sens 38(1):416–428

    Article  Google Scholar 

  14. Du Q, Fowler J (2008) Low-complexity principal component analysis for hyperspectral image compression. Int J High Performance Comput Applicat 22(4):438–448

    Article  Google Scholar 

  15. Du Q, Ly N, Fowler JE (2014) An operational approach to PCA+JPEG2000 compression of hyperspectral imagery. IEEE J Sel Topics Appl Earth Observ Remote Sens 7(6):2237–2245

    Article  Google Scholar 

  16. Effros M, Feng H, Zeger K (2004) Suboptimality of the Karhunen-Loeve transform for transform coding. IEEE Trans Inf Theory 50(8):1605–1619

    Article  MathSciNet  Google Scholar 

  17. Fu W, Li S, Fang L, Benediktsson JA (2017) Adaptive spectral–spatial compression of hyperspectral image with sparse representation. IEEE Trans Geosci Remote Sens 55(2):671–682

    Article  Google Scholar 

  18. Gupta S, Gersho A (1992) Feature predictive vector quantization of multispectral images. IEEE Trans Geosci Remote Sens 30:491–501

    Article  Google Scholar 

  19. He C et al (2003) Optimal 3-D coefficient tree structure for 3-D wavelet video coding. IEEE Trans Circuits Syst Video Technol 13(10):961–972

    Article  Google Scholar 

  20. Hou Y, Liu G (2008) Hyperspectral image compression using a three-dimensional embedded zeroblock coding algorithm. Opt Eng 47(11):1273–1279

    Google Scholar 

  21. Hsiang ST (2001) Embedded image coding using ZeroBlocks of subband/wavelet coefficients and context modeling. In: Proceedings of the IEEE Data Compression Conference, pp 83–92

  22. Hu YC et al (2012) Improved vector quantization scheme for grayscale image compression. Opto-Electron Rev 20(2):187–193

    Google Scholar 

  23. Imani M (2017) Rx anomaly detector with rectified background. IEEE Geosci Remote Sens Lett 14(8):1313–1317

    Article  Google Scholar 

  24. Jolliffe IT (1986) Principal component analysis. Springer-Verlag, Berlin

    Book  Google Scholar 

  25. Lagoudakis MG et al (2004) Simple auctions with performance guarantees for multi-robot task allocation. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp 698–705

  26. Lim S, Sohn KH, Lee C (2001) Principal component analysis for compression of hyperspectral images. Geoscience and Remote Sensing Symposium, IGARSS ‘01, pp 97–99

  27. Linde Y, Buzo A, Gray R (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):184–195

    Article  Google Scholar 

  28. Mielikainen JS, Kaarna A, Toivanen PJ (2002) Lossless hyperspectral image compression via linear prediction. In: Proccedings of SPIE, vol 4725, pp 57–74

  29. Pennebaker WB, Mitchell JL (1992) JPEG still image data compression standard. Van Nostrand Reinhold, New York

    Google Scholar 

  30. Rizzo F, Carpentieri B, Motta G, Storer JA (2005) Low-complexity lossless compression of hyperspectral imagery via linear prediction. IEEE Signal Process Lett 12(2):138–141

    Article  Google Scholar 

  31. Said A, Pearlman WA (1996) A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Trans Circuits Syst Video Technol 6(3):243–250

    Article  Google Scholar 

  32. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462

    Article  Google Scholar 

  33. Shensa MJ (1992) Discrete wavelet transform: wedding the a Trous and Mallat algorithms. IEEE Trans Signal Process 40(10):2464–2482

    Article  Google Scholar 

  34. Tang X, Pearlman WA, Modestino JW (2003) Hyperspectral image compression using three-dimensional wavelet coding. In: Proceedings of SPIE, pp 294–350

  35. Wen J, Ma C, Zhao J (2014) FIVQ algorithm for interference hyper-spectral image compression. Opt Commun 322(8):97–104

    Article  Google Scholar 

  36. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1-3):37–52

    Article  Google Scholar 

  37. Yip P, Rao KR (1974) Discrete cosine transform. IEEE Trans Comput c-23(1):90–93

    Article  MathSciNet  Google Scholar 

  38. Zhang J, Liu G (2007) An efficient reordering prediction-based lossless compression algorithm for hyperspectral images. IEEE Geosci Remote Sens Lett 4(2):283–287

    Article  Google Scholar 

  39. Zhao D, Zhu S, Wang F (2016) Lossy hyperspectral image compression based on intra-band prediction and inter-band fractal encoding. Comput Electr Eng 54:494–505

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Open Research Fund of Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences (Grant No. LSIT201606D) and the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) (Grant No. 201800030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Pan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Pan, Z. & Wang, Y. The linear prediction vector quantization for hyperspectral image compression. Multimed Tools Appl 78, 11701–11718 (2019). https://doi.org/10.1007/s11042-018-6724-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6724-8

Keywords

Navigation