Skip to main content
Log in

A comprehensive overview of feature representation for biometric recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The performance of any biometric recognition system heavily dependents on finding a good and suitable feature representation space where observations from different classes are well separated. Unfortunately, finding this proper representation is a challenging problem which has taken a huge interest in machine learning and computer vision communities. In the this paper we present a comprehensive overview of the different existing feature representation techniques. This is carried out by introducing simple and clear taxonomies as well as effective explanation of the prominent techniques. This is intended to guide the neophyte and provide researchers with state-of-the-art approaches in order to help advance the research topic in biometrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Al Maadeed S, Jiang X, Rida I, Bouridane A (2018) Palmprint identification using sparse and dense hybrid representation. Multimedia Tools and Applications:1–15. https://doi.org/10.1007/s11042-018-5655-8

    Article  Google Scholar 

  2. Amari S (1999) Natural gradient learning for over-and under-complete bases in ICA. Neural Comput 11(8):1875–1883. https://doi.org/10.1162/089976699300015990

    Article  Google Scholar 

  3. Archibald R, Fann G (2007) Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci Remote Sens Lett 4(4):674–677. https://doi.org/10.1109/LGRS.2007.905116

    Article  Google Scholar 

  4. Bach F (2008) Consistency of the group lasso and multiple kernel learning. J Mach Learn Res 9:1179–1225

    MathSciNet  MATH  Google Scholar 

  5. Bakshi S, Tuglular T (2013) Security through human-factors and biometrics. In: Proceedings of the 6th International Conference on Security of Information and Networks. ACM, pp 463–463. https://doi.org/10.1145/2523514.2523597

  6. Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550. https://doi.org/10.1109/72.298224

    Article  Google Scholar 

  7. Belkin M, Niyogi P (2001) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS, vol 14, pp 585–591

  8. Bellet A, Habrard A, Sebban M (2013) A survey on metric learning for feature vectors and structured data. arXiv:1306.6709

  9. Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell 35(8):1798–1828. https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  10. Bishop CM (2006) Pattern recognition. Machine Learning

  11. Bishop CM (2006) Pattern recognition and machine learning. Springer, Berlin

    MATH  Google Scholar 

  12. Bleakley K, Vert JP (2011) The group fused lasso for multiple change-point detection. arXiv:1106.4199

  13. Bousquet O, Elisseeff A (2002) Stability and generalization. J Mach Learn Res 2:499–526

    MathSciNet  MATH  Google Scholar 

  14. Chandrashekar G, Sahin F (2014) A survey on feature selection methods. Comput Electr Eng 40(1):16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024

    Article  Google Scholar 

  15. Chang X, Nie F, Yang Y, Huang H (2014) A convex formulation for semi-supervised multi-label feature selection. In: AAAI, pp 1171–1177

  16. Chang X, Nie F, Yang Y, Zhang C, Huang H (2016) Convex sparse PCA for unsupervised feature learning. ACM Trans Knowl Discov Data (TKDD) 11(1):3. https://doi.org/10.1145/29105854

    Article  Google Scholar 

  17. Chen X, Yuan G, Wang W, Nie F, Chang X, Huang JZ (2018) Local adaptive projection framework for feature selection of labeled and unlabeled data. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2018.2830186

    Article  MathSciNet  Google Scholar 

  18. Cheng B, Yang J, Yan S, Fu Y, Huang TS (2010) Learning with 1-graph for image analysis. IEEE Trans Image Process 19(4):858–866. https://doi.org/10.1109/TIP.2009.2038764

    Article  MathSciNet  MATH  Google Scholar 

  19. Cunningham JP, Ghahramani Z (2015) Linear dimensionality reduction: survey, insights, and generalizations. J Mach Learn Res 16:2859–2900

    MathSciNet  MATH  Google Scholar 

  20. d’Aspremont A, El Ghaoui L, Jordan MI, Lanckriet GR (2007) A direct formulation for sparse PCA using semidefinite programming. SIAM Rev 49(3):434–448. https://doi.org/10.1137/050645506

    Article  MathSciNet  MATH  Google Scholar 

  21. De Ridder D, Duin RP, Kittler J (2002) Texture description by independent components. In: Structural, Syntactic, and Statistical Pattern Recognition. Springer, pp 587–596. https://doi.org/10.1007/3-540-70659-3_61

    Google Scholar 

  22. Diamant I, Klang E, Amitai M, Konen E, Goldberger J, Greenspan H (2017) Task-driven dictionary learning based on mutual information for medical image classification. IEEE Trans Biomed Eng 64(6):1380–1392. https://doi.org/10.1109/TBME.2016.2605627

    Article  Google Scholar 

  23. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271

    Article  MathSciNet  Google Scholar 

  24. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–3745. https://doi.org/10.1109/TIP.2006.881969

    Article  MathSciNet  Google Scholar 

  25. Elad M, Figueiredo MA, Ma Y (2010) On the role of sparse and redundant representations in image processing. Proc IEEE 98(6):972–982. https://doi.org/10.1109/JPROC.2009.2037655

    Article  Google Scholar 

  26. Eshelman LJ (2014) The CHC adaptive search algorithm: How to have safe search when engaging. Found Genet Algorithm 1991 (FOGA 1(1):265. https://doi.org/10.1016/B978-0-08-050684-5.50020-3

    Article  Google Scholar 

  27. Evgeniou T, Poggio T, Pontil M, Verri A (2002) Regularization and statistical learning theory for data analysis. Comput Stat Data Anal 38(4):421–432. https://doi.org/10.1016/S0167-9473(01)00069-X

    Article  MathSciNet  MATH  Google Scholar 

  28. Fan M, Chang X, Tao D (2017) Structure regularized unsupervised discriminant feature analysis. In: AAAI, pp 1870–1876

  29. Fei L, Teng S, Wu J, Rida I (2017) Enhanced minutiae extraction for high-resolution palmprint recognition. Int J Image Graph 17(04):1750,020. https://doi.org/10.1142/S0219467817500206

    Article  Google Scholar 

  30. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7(2):179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x4

    Article  Google Scholar 

  31. Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345

    Article  Google Scholar 

  32. Goldberg DE et al (1989) Genetic algorithms in search optimization and machine learning, vol 412. Addison-wesley, Reading. ISBN: 0201157675

    Google Scholar 

  33. Graves A, Schmidhuber J (2005) Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw 18 (5):602–610. https://doi.org/10.1016/j.neunet.2005.06.042

    Article  Google Scholar 

  34. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  35. Hastie T, Tibshirani R, Friedman J (2001) Springer series in statistics. The elements of statistical learning: Data mining, inference and prediction. https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

  36. He X, Cai D, Yan S, Zhang HJ (2005) Neighborhood preserving embedding. In: IEEE International conference on computer vision, vol 2, pp 1208–1213. https://doi.org/10.1109/ICCV.2005.167

  37. Hyvärinen A, Karhunen J, Oja E (2004) Independent component analysis, vol 46. Wiley, New York

    Google Scholar 

  38. Jiang Z, Lin Z, Davis LS (2011) Learning a discriminative dictionary for sparse coding via label consistent k-svd. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 1697–1704. https://doi.org/10.1109/CVPR.2011.5995354

  39. Jimenez LO, Landgrebe DA (1998) Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans Syst Man Cybern Part C: Appl Rev 28(1):39–54. https://doi.org/10.1109/5326.661089

    Article  Google Scholar 

  40. John GH, Kohavi R, Pfleger K et al (1994) Irrelevant features and the subset selection problem. In: Machine learning: proceedings of the eleventh international conference, pp 121–129. https://doi.org/10.1016/B978-1-55860-335-6.50023-4

    Chapter  Google Scholar 

  41. Joho M, Mathis H, Lambert RH (2000) Overdetermined blind source separation: Using more sensors than source signals in a noisy mixture. In: Proceedings of International conference on independent component analysis and blind signal separation. Helsinki, pp 81–86

  42. Journée M., Nesterov Y, Richtárik P, Sepulchre R (2010) Generalized power method for sparse principal component analysis. J Mach Learn Res 11:517–553

    MathSciNet  MATH  Google Scholar 

  43. Kao YH, Van Roy B (2013) Learning a factor model via regularized PCA. Mach Learn 91(3):279–303. https://doi.org/10.1007/s10994-013-5345-8

    Article  MathSciNet  MATH  Google Scholar 

  44. Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766. https://doi.org/10.1007/978-0-387-30164-8

  45. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1):273–324. https://doi.org/10.1016/S0004-3702(97)00043-X

    Article  MATH  Google Scholar 

  46. Kokiopoulou E, Saad Y (2007) Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE Trans Pattern Anal Mach Intell 29(12):2143–2156. https://doi.org/10.1109/TPAMI.2007.1131

    Article  Google Scholar 

  47. Kong S, Wang D (2012) A brief summary of dictionary learning based approach for classification (revised). arXiv:1205.6544

  48. Langley P et al (1994) Selection of relevant features in machine learning. Defense Technical Information Center

  49. Law MH, Figueiredo MA, Jain AK (2004) Simultaneous feature selection and clustering using mixture models. IEEE Trans Pattern Anal Mach Intell 26(9):1154–1166. https://doi.org/10.1109/TPAMI.2004.71

    Article  Google Scholar 

  50. Lazar C, Taminau J, Meganck S, Steenhoff D, Coletta A, Molter C, De Schaetzen V, Duque R, Bersini H, Nowe A (2012) A survey on filter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Trans Comput Biol Bioinforma (TCBB) 9(4):1106–1119. https://doi.org/10.1109/TCBB.2012.33

    Article  Google Scholar 

  51. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324. https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  52. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  53. Liu H, Setiono R et al (1996) A probabilistic approach to feature selection-a filter solution. In: ICML. Citeseer, vol 96, pp 319–327

  54. Luo M, Nie F, Chang X, Yang Y, Hauptmann A, Zheng Q (2016) Avoiding optimal mean robust pca/2dpca with non-greedy 1 norm maximization. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence

  55. Luo M, Nie F, Chang X, Yang Y, Hauptmann AG, Zheng Q (2017) Avoiding optimal mean 2,1, norm maximization-based robust pca for reconstruction. Neural computation 29(4):1124–1150. https://doi.org/10.1162/NECO_a_00937

    Article  MathSciNet  MATH  Google Scholar 

  56. Luo M, Chang X, Li Z, Nie L, Hauptmann A, Zheng Q (2017) Simple to complex cross-modal learning to rank. Comput Vis Image Underst 163:67–77. https://doi.org/10.1016/j.cviu.2017.07.001

    Article  Google Scholar 

  57. Luo M, Chang X, Nie L, Yang Y, Hauptmann A, Zheng Q (2018) An adaptive semisupervised feature analysis for video semantic recognition. IEEE Trans Cybern 48(2):648–660. https://doi.org/10.1109/TCYB.2017.2647904

    Article  Google Scholar 

  58. Luo M, Nie F, Chang X, Yang Y, Hauptmann A, Zheng Q (2018) Adaptive unsupervised feature selection with structure regularization. IEEE Trans Neural Netw Learn Syst 29(4):944–956. https://doi.org/10.1109/TNNLS.2017.2650978

    Article  Google Scholar 

  59. Ma Z, Chang X, Xu Z, Sebe N, Hauptmann A (2017) Joint attributes and event analysis for multimedia event detection. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2017.2709308

  60. Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53–69. https://doi.org/10.1109/TIP.2007.911828

    Article  MathSciNet  MATH  Google Scholar 

  61. Mairal J, Bach F, Ponce J (2014) Sparse modeling for image and vision processing. arXiv:1411.3230

  62. Mairal J, Ponce J, Sapiro G, Zisserman A, Bach F (2009) Supervised dictionary learning. In: Advances in neural information processing systems, pp 1033–1040

  63. Mukherjee S, Rifkin R, Poggio T (2003) Regression and classification with regularization. In: Nonlinear estimation and classification. Springer, pp 111–128. https://doi.org/10.1007/978-0-387-21579-2_7

    Chapter  Google Scholar 

  64. Narendra PM, Fukunaga K (1977) A branch and bound algorithm for feature subset selection. IEEE Trans Comput 100(9):917–922. https://doi.org/10.1109/TC.1977.1674939

    Article  MATH  Google Scholar 

  65. Pearson K (1901) Liii. on lines and planes of closest fit to systems of points in space. The London. Edinb Dublin Philos Mag J Sci 2(11):559–572. https://doi.org/10.1080/147864401094627209

    Article  MATH  Google Scholar 

  66. Platt J et al (1999) Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv Large Margin Classifiers 10(3):61–74

    Google Scholar 

  67. Porrill J, Stone JV (1998) Undercomplete independent component analysis for signal separation and dimension reduction. Technical report, Citeseer

  68. Poultney C, Chopra S, Cun YL et al (2006) Efficient learning of sparse representations with an energy-based model. In: Advances in neural information processing systems, pp 1137–1144

  69. Ramirez I, Sprechmann P, Sapiro G (2010) Classification and clustering via dictionary learning with structured incoherence and shared features. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 3501–3508. https://doi.org/10.1109/CVPR.2010.5539964

  70. Rida I, Almaadeed S, Bouridane A (2014) Improved gait recognition based on gait energy images. In: 26Th international conference on microelectronics (ICM). IEEE, pp 40–43. https://doi.org/10.1109/ICM.2014.7071801

  71. Rida I, Herault R, Gasso G (2014) Supervised music chord recognition. In: 2014 13th international conference on Machine learning and applications (ICMLA). IEEE, pp 336–341. https://doi.org/10.1109/ICMLA.2014.60

  72. Rida I, Al Maadeed S, Bouridane A (2015) Unsupervised feature selection method for improved human gait recognition. In: 23Rd european signal processing conference (EUSIPCO). IEEE, pp 1128–1132. https://doi.org/10.1109/EUSIPCO.2015.7362559

  73. Rida I, Bouridane A, Marcialis GL, Tuveri P (2015) Improved human gait recognition. In: Image Analysis and Processing (ICIAP). Springer, pp 119–129. https://doi.org/10.1007/978-3-319-23234-8_12

    Chapter  Google Scholar 

  74. Rida I, Boubchir L, Al-Maadeed N, Al-Maadeed S, Bouridane A (2016) Robust model-free gait recognition by statistical dependency feature selection and globality-locality preserving projections. In: 39Th international conference on telecommunications and signal processing (TSP). IEEE, pp 652–655. https://doi.org/10.1109/TSP.2016.7760963

  75. Rida I, Jiang X, Marcialis GL (2016) Human body part selection by group lasso of motion for model-free gait recognition. IEEE Signal Process Lett 23(1):154–158. https://doi.org/10.1109/LSP.2015.2507200

    Article  Google Scholar 

  76. Rida I, Almaadeed S, Bouridane A (2016) Gait recognition based on modified phase-only correlation. SIViP 10(3):463–470. https://doi.org/10.1007/s11760-015-0766-4

    Article  Google Scholar 

  77. Rida I, Al Maadeed N, Marcialis GL, Bouridane A, Herault R, Gasso G (2017) Improved model-free gait recognition based on human body part. In: Biometric Security and Privacy. Springer, pp 141–161. https://doi.org/10.1007/978-3-319-47301-7_6

    Google Scholar 

  78. Rida I, Al-maadeed N, Al-maadeed S (2018) Robust gait recognition: a comprehensive survey. IET Biometrics. https://doi.org/10.1049/iet-bmt.2018.5063

    Article  Google Scholar 

  79. Rida I, Al-Maadeed S, Mahmood A, Bouridane A, Bakshi S (2018) Palmprint identification using an ensemble of sparse representations. IEEE Access 6:3241–3248. https://doi.org/10.1109/ACCESS.2017.2787666

    Article  Google Scholar 

  80. Rida I, Herault R, Marcialis GL, Gasso G (2018) Palmprint recognition with an efficient data driven ensemble classifier. Pattern Recognition Letters. https://doi.org/10.1016/j.patrec.2018.04.033

    Article  Google Scholar 

  81. Rida I, Maadeed SA, Jiang X, Lunke F, Bensrhair A (2018) An ensemble learning method based on random subspace sampling for palmprint identification. In: 2018 IEEE International conference on acoustics, speech and signal processing (ICASSP), pp 2047–2051. https://doi.org/10.1109/ICASSP.2018.8462051

  82. Roweis S (1998) EM algorithms for PCA and SPCA. Advances in neural information processing systems:626–632

  83. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326. https://doi.org/10.1126/science.290.5500.2323

    Article  Google Scholar 

  84. Salakhutdinov R, Hinton GE (2009) Deep boltzmann machines. In: AISTATS, vol 1, p 3

  85. Scholkopf B, Smola A, Müller KR (1999) Kernel principal component analysis. In: Advances in Kernel Methods-Support Vector Learning

  86. Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press, Cambridge. ISBN: 0262194759

    Google Scholar 

  87. Silva VD, Tenenbaum JB (2002) Global versus local methods in nonlinear dimensionality reduction. In: Advances in neural information processing systems, pp 705–712

  88. Spearman C (1904) General intelligence, objectively determined and measured. Amer J Psychol 15(2):201–292. https://doi.org/10.2307/1412107

    Article  Google Scholar 

  89. Subrahmanya N, Shin YC (2010) Sparse multiple kernel learning for signal processing applications. IEEE Trans Pattern Anal Mach Intell 32(5):788–798. https://doi.org/10.1109/TPAMI.2009.98

    Article  Google Scholar 

  90. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323. https://doi.org/10.1126/science.290.5500.2319

    Article  Google Scholar 

  91. Theis FJ, Lang EW, Puntonet CG (2004) A geometric algorithm for overcomplete linear ICA. Neurocomputing 56:381–398. https://doi.org/10.1016/j.neucom.2003.09.008

    Article  Google Scholar 

  92. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Royal Stat Soc. Series B (Methodological) 58:267–288

    Article  MathSciNet  Google Scholar 

  93. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused lasso. J Royal Stat Soc Ser B (Stat Methodol) 67(1):91–108. https://doi.org/10.1111/j.1467-9868.2005.00490.x

    Article  MathSciNet  MATH  Google Scholar 

  94. Tipping M, Bishop CM (1999) Probabilistic principal component analysis. J Royal Stat Soc Ser B (Stat Methodol) 61(3):611–622. https://doi.org/10.1111/1467-9868.00196

    Article  MathSciNet  MATH  Google Scholar 

  95. Torgerson WS (1952) Multidimensional scaling: i. theory and method. Psychometrika 17(4):401–419. https://doi.org/10.1007/BF02288916

    Article  MathSciNet  MATH  Google Scholar 

  96. Van Der Maaten L, Postma E, Van den Herik J (2009) Dimensionality reduction: a comparative. J Mach Learn Res 10:66–71

    Google Scholar 

  97. Vapnik V (1995) The nature of statistical learning theory. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  98. Verleysen M, François D (2005) The curse of dimensionality in data mining and time series prediction. In: Computational Intelligence and Bioinspired Systems. Springer, pp 758–770. https://doi.org/10.1007/11494669_93

    Chapter  Google Scholar 

  99. Wang S, Chang X, Li X, Long G, Yao L, Sheng QZ (2016) Diagnosis code assignment using sparsity-based disease correlation embedding. IEEE Trans Knowl Data Eng 28(12):3191–3202. https://doi.org/10.1109/TKDE.2016.2605687

    Article  Google Scholar 

  100. Wang R, Nie F, Hong R, Chang X, Yang X, Yu W (2017) Fast and orthogonal locality preserving projections for dimensionality reduction. IEEE Trans Image Process 26(10):5019–5030. https://doi.org/10.1109/TIP.2017.2726188

    Article  MathSciNet  MATH  Google Scholar 

  101. Wang S, Li X, Yao L, Sheng QZ, Long G et al (2017) Learning multiple diagnosis codes for ICU patients with local disease correlation mining. ACM Trans Knowl Discov Data (TKDD) 11(3):31. https://doi.org/10.1145/3003729

    Article  Google Scholar 

  102. Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. J Mach Learn Res 10(Feb):207–244

    MATH  Google Scholar 

  103. Welling M, Zemel RS, Hinton GE (2004) Probabilistic sequential independent components analysis. IEEE Trans Neural Netw 15(4):838–849. https://doi.org/10.1109/TNN.2004.828765

    Article  Google Scholar 

  104. Weston J, Elisseeff A, Schölkopf B, Tipping M (2003) Use of the zero norm with linear models and kernel methods. J Mach Learn Res 3:1439–1461

    MathSciNet  MATH  Google Scholar 

  105. Wright J, Ma Y, Mairal J, Sapiro G, Huang TS, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044. https://doi.org/10.1109/JPROC.2010.2044470

    Article  Google Scholar 

  106. Wu L, Wang Y, Pan S (2016) Exploiting attribute correlations: a novel trace lasso-based weakly supervised dictionary learning method. IEEE Trans Cybern 47(12):4497–4508. https://doi.org/10.1109/TCYB.2016.2612686

    Article  Google Scholar 

  107. Yang M, Zhang L, Yang J, Zhang D (2010) Metaface learning for sparse representation based face recognition. In: IEEE International conference on image processing (ICIP), pp 1601–1604. https://doi.org/10.1109/ICIP.2010.5652363

  108. Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse representation. In: IEEE International conference on computer vision (ICCV), pp 543–550. https://doi.org/10.1109/ICCV.2011.6126286

  109. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J Royal Stat Soc Ser B (Stat Methodol) 68(1):49–67. https://doi.org/10.1111/j.1467-9868.2005.00532.x

    Article  MathSciNet  MATH  Google Scholar 

  110. Zhang LQ, Cichocki A, Amari S (1999) Natural gradient algorithm for blind separation of overdetermined mixture with additive noise. IEEE Signal Process Lett 6(11):293–295. https://doi.org/10.1109/97.796292

    Article  Google Scholar 

  111. Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat 38:894–942

    Article  MathSciNet  Google Scholar 

  112. Zhang Q, Li B (2010) Discriminative k-svd for dictionary learning in face recognition. In: IEEE Conference on computer vision and pattern recognition (CVPR), pp 2691–2698. https://doi.org/10.1109/CVPR.2010.5539989

  113. Zou H, Hastie T, Tibshirani R (2006) Sparse principal component analysis. J Comput Graph Stat 15(2):265–286. https://doi.org/10.1198/106186006X113430

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This publication was made possible using a grant from the Qatar National Research Fund through National Priority Research Program (NPRP) # NPRP 8-140-2-065. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund or Qatar University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imad Rida.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rida, I., Al-Maadeed, N., Al-Maadeed, S. et al. A comprehensive overview of feature representation for biometric recognition. Multimed Tools Appl 79, 4867–4890 (2020). https://doi.org/10.1007/s11042-018-6808-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6808-5

Keywords

Navigation