Skip to main content
Log in

Semi-paired and semi-supervised multimodal hashing via cross-modality label propagation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Due to the fast query speed and low storage cost, multimodal hashing methods have been attracting increasing attention in large-scale cross-media retrieval tasks. Most existing multimodal hashing methods can only handle fully-paired settings, where all data samples with different modalities are well paired. However, in practical applications, such fully-paired multimodal data may not be available. To this end, semi-paired multimodal hashing methods have been proposed by exploiting correlations between unpaired samples. Nevertheless, currently existing semi-paired hashing methods are unsupervised methods. When little supervised information is available, these methods cannot utilize supervised information to enhance the retrieval performance. To effectively utilize the limited supervised information, this paper proposed a novel hashing framework, named semi-paired and semi-supervised multimodal hashing (SSMH), to deal with the scenario where partial pairwise correspondences and labels are provided in advance for cross-media retrieval task. The proposed SSMH propagates the semantic labels from labeled multimodal samples to unlabeled multimodal samples, so that the label information of the entire multimodal training set is available. Then, most existing similarity graph based supervised multimodal hashing methods can be used to learn hashing codes. Therefore, the proposed framework can fully utilize the limited label information and pairwise correspondences to keep the semantic similarity for hashing codes. Thorough experiments on standard datasets show the superior performance of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chang X, Yang Y (2017) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Trans Neural Netw Learn Syst 28(10):2294–2305

    Article  MathSciNet  Google Scholar 

  2. Ding G, Guo Y, Zhou J (2014) Collective matrix factorization hashing for multimodal data. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2083–2090

  3. Gionis A, Indyk P, Motwani R (1999) Similarity search in high dimensions via hashing. In: Proceedings of the international conference on very large data bases, pp 518–529

  4. Gong Y, Lazebnik S, Gordo A (2013) Iterative quantization: a Procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans Pattern Anal Mach Intell 35(12):2916–2929

    Article  Google Scholar 

  5. Jin Z, Li C, Lin Y et al (2017) Density sensitive hashing. IEEE Trans Cybern 44(8):1362–1371

    Article  Google Scholar 

  6. Kim S, Kang Y, Choi S (2012) Sequential spectral learning to hash with multiple representations. In: Proceedings of the European conference on computer vision, vol 7576, pp 538–551

  7. Kulis B, Grauman K (2012) Kernelized locality-sensitive hashing. IEEE Trans Pattern Anal Mach Intell 34(6):1092

    Article  Google Scholar 

  8. Kumar S, Udupa R (2011) Learning hash functions for cross-view similarity search. In: Proceedings of the international joint conferences on artificial intelligence, pp 1360–1365

  9. Lei Z, Zi H, Li Z et al (2018) Exploring auxiliary context: discrete semantic transfer hashing for scalable image retrieval. IEEE Trans Neural Netw Learn Syst pp(99):1–13

    Article  MathSciNet  Google Scholar 

  10. Lin C, Dong X, Tsang WH (2014) Spectral embedded hashing for scalable image retrieval. IEEE Trans Cybern 44(7):1180–1190

    Article  Google Scholar 

  11. Lin Z, Ding G, Hu M et al (2015) Semantics-preserving hashing for cross-view retrieval. In: Computer vision and pattern recognition, pp 3864–3872

  12. Liu W, Wang J, Kumar S (2011) Hashing with graphs. In: International conference on machine learning, pp 1–8

  13. Liu X, He J, Liu D et al (2012) Compact kernel hashing with multiple features. In: Proceedings of the ACM international conference on multimedia, pp 881–884

  14. Liu W, Kumar S, Kumar S (2014) Discrete graph hashing. In: Proceedings of the advances in neural information processing systems, vol 4, pp 3419–3427

  15. Liu L, Yu M, Shao L (2015) Multiview alignment hashing for efficient image search. IEEE Trans Image Process 24(3):956

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo M, Chang X, Li Z et al (2017) Simple to complex cross-modal learning to rank. Comput Vis Image Underst 163:67–77

    Article  Google Scholar 

  17. Luo X, Nie L, He X et al (2018) Fast scalable supervised hashing. In: The international ACM SIGIR conference, pp 735–744

  18. Nie L, Zhang L, Yang Y et al (2015) Beyond doctors: future health prediction from multimedia and multimodal observations, pp 591–600

  19. Nie L, Zhang L, Yan Y et al (2017) Multiview physician-specific attributes fusion for health seeking. IEEE Trans Cybern 47(11):3680–3691

    Article  Google Scholar 

  20. Shen F, Shen C, Liu W et al (2015) Supervised discrete hashing. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 37–45

  21. Shen X, Shen F, Sun QS et al (2015) Multi-view latent hashing for efficient multimedia search. In: Proceedings of the ACM international conference on multimedia, pp 831–834

  22. Shen X, Sun QS, Yuan YH (2016) Semi-paired hashing for cross-view retrieval. Neurocomputing 213:14–23

    Article  Google Scholar 

  23. Shen X, Shen F, Sun QS et al (2017) Semi-paired discrete hashing: learning latent hash codes for semi-paired cross-view retrieval. IEEE Trans Cybern 47 (12):4275–4288

    Article  Google Scholar 

  24. Song J, Yang Y, Huang Z et al (2011) Multiple feature hashing for real-time large scale near-duplicate video retrieval. In: Proceedings of the AACM international conference on multimedia, pp 423–432

  25. Song J, Yang Y, Yang Y et al (2013) Inter-media hashing for large-scale retrieval from heterogeneous data sources. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 785–796

  26. Wang J, Shen HT, Song J et al (2014) Hashing for similarity search: arXiv:1408.2927

  27. Wang D, Gao X, Wang X et al (2015) Semantic topic multimodal hashing for cross-media retrieval. In: IJCAI, pp 3890–3896

  28. Wang Q, Si L, Shen B (2015) Learning to hash on partial multi-modal data. In: Proceedings of the international joint conference on artificial intelligence, pp 3904–3910

  29. Wang D, Gao X, Wang X et al (2016) Multimodal discriminative binary embedding for large-scale cross-modal retrieval. IEEE Trans Image Process 25 (10):4540–4554

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang S, Chang X, Li X et al (2016) Diagnosis code assignment using sparsity-based disease correlation embedding. IEEE Trans Knowl Data Eng 28 (12):3191–3202

    Article  Google Scholar 

  31. Weiss Y, Torralba A, Fergus R (2008) Spectral hashing. In: Proceedings of the advances in neural information processing systems, vol 282, pp 1753–1760

  32. Wu B, Yang Q, Zheng WS et al (2015) Quantized correlation hashing for fast cross-modal search, Proceedings of the international joint conference on artificial intelligence, pp 3946–3952

  33. Xie L, Shen J, Zhu L (2016) Online cross-modal hashing for web image retrieval. In: AAAI

  34. Xie L, Shen J, Han J et al (2017) Dynamic multi-view hashing for online image retrieval. In: Twenty-sixth international joint conference on artificial intelligence, pp 3133–3139

  35. Zhang D, Li WJ (2014) Large-scale supervised multimodal hashing with semantic correlation maximization. In: Proceedings of the AAAI conference on artificial intelligence, pp 2177–2183

  36. Zhen Y, Yeung DY (2012) A probabilistic model for multimodal hash function learning. In: ACM SIGKDD, pp 940–948

  37. Zhou D, Bousquet O, Lal T N et al (2003) Learning with local and global consistency. International conference on neural information processing systems 16(4):321–328

    Google Scholar 

  38. Zhou J, Ding G, Guo Y (2014) Latent semantic sparse hashing for cross-modal similarity search. In: ACM, pp 415–424

  39. Zhu L, Huang Z, Chang X et al (2017) Exploring consistent preferences: discrete hashing with pair-exemplar for scalable landmark search. In: ACM, pp 726–734

  40. Zhu L, Huang Z, Liu X et al (2017) Discrete multimodal hashing with canonical views for robust mobile landmark search. IEEE Trans Multimedia 19(9):2066–2079

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported in part by the National Natural Science Foundation of China under Grant 61702394, Grant 61572385 and Grant 61711530248, in part by the Postdoctoral Science Foundation of China under Grant 2018T111021 and Grant 2017M613082, in part by the Aeronautical Science Foundation of China under Grant 20171981008, in part by the Shaanxi Key Research and Development Program under Grant 2017ZDXM-GY-002, and in part by the Fundamental Research Funds for the Central Universities under Grant JBX170313 and Grant XJS17063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Shang, B., Wang, Q. et al. Semi-paired and semi-supervised multimodal hashing via cross-modality label propagation. Multimed Tools Appl 78, 24167–24185 (2019). https://doi.org/10.1007/s11042-018-6858-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6858-8

Keywords

Navigation