Skip to main content
Log in

CT image denoising using NLM and its method noise thresholding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Computed Tomography (CT) is one of the major tools to identify diagnose in medical science. The quality of CT images is dependent of X-ray amount. If X-ray dose is higher, the quality of CT image is better but it may generate bed impact to the patients. Low dose CT images are noisy due to some major reasons such as statistical uncertainty in all physical measurements. If noise can be reduced or removed from low dose CT images, then quality of low dose CT images can be improved without increasing dose. Hence in this paper, a method is proposed in which Non-local means (NLM) filter and wavelet packet based thresholding are processed. For better edge preservation and noise reduction, method noise concept is used. The results of proposed method is analyzed and also compared with some existing methods. From comparative result analysis, it was observed that performance of the proposed scheme is superior to the existing methods in terms of visual quality, Image Quality Index (IQI), PSNR and Entropy Difference (ED).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ali SH, Sukanesh R (2011) An efficient algorithm for denoising MR and CT images using digital curvelet transform. Adv Exp Med Biol 696:471–480

    Article  Google Scholar 

  2. Boone J, Geraghty EM, Seibert JA, Wootton-Gorges SL (2003) Dose reduction in pediatric CT: a rational approach. J Radiol 228(2):352–360

    Article  Google Scholar 

  3. Borsdorf A, Raupach R, Flohr T, Hornegger J (2008) Wavelet based noise reduction in CT-images using correlation analysis. IEEE Trans Med Imaging 27(12):1685–1703

    Article  Google Scholar 

  4. Borsdorf A, Raupach R, Hornegger J (2008) Multiple CT-reconstructions for locally adaptive anisotropic wavelet denoising. Int J CARS 2(5):255–264

    Article  Google Scholar 

  5. Buades A, Coll B, Morel Song JM (2005) A review of image denoising algorithms, with a new one. SIAM J Multiscale Model Simul 4(2):490–530

    Article  MathSciNet  Google Scholar 

  6. Chang SG, Yu B, Vetterli M (2000) Spatially adaptive thresholding with context modeling for image denoising. IEEE Trans Image Process 9(9):1522–1531

    Article  MathSciNet  Google Scholar 

  7. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  8. Diwakar M, Kumar M (2018) CT image denoising using NLM and correlation based wavelet packet thresholding. IET Image Process 12(5):708–715

    Article  Google Scholar 

  9. Diwakar M, Kumar M (2018) A review on CT image noise and its denoising. Biomed Sig Process Control 42:73–88

    Article  Google Scholar 

  10. Donoho DL (1995) Denoising by soft thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  Google Scholar 

  11. Donoho DL, Johnstone IM (1994) Ideal spatial adaptation via wavelet shrinkage. Biometrika 81(3):425–455

    Article  MathSciNet  Google Scholar 

  12. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process 15(12):3736–45

    Article  MathSciNet  Google Scholar 

  13. Goldstein T, Osher S (2009) The split bregman method for l1 regularized problems. SIAM J Imaging Sci 2(2):323–34

    Article  MathSciNet  Google Scholar 

  14. Gopalan B, Chilambuchelvan A, Vijayan S, Gowrison G (2015) Performance improvement of average based spatial filters through multilevel preprocessing using wavelets. IEEE Sig Process Lett 22(10):1698–1702

    Article  Google Scholar 

  15. Hashemi SM, Paul NS, Beheshti S, Cobbold RSC (2015) Adaptively tuned iterative low dose ct image denoising. Computational and Mathematical Methods in Medicine

  16. Huda W, Scalzetti EM, Levin G (2000) Technique factors and image quality as functions of patient weight at abdominal CT. J Radiol 217(2):430–435

    Article  Google Scholar 

  17. Jain P, Tyagi V (2015) An adaptive edge-preserving image denoising technique using tetrolet transforms. J Vis Comput 31(5):657–674

    Article  Google Scholar 

  18. Kumar C, Singh AK, Kumar P (2018) A recent survey on image watermarking techniques and its application in e-governance. Multimed Tools Appl 77(3):3597–3622

    Article  Google Scholar 

  19. Li K, Zhang R (2010) Multiscale wiener filtering method for low-dose CT images. In: Proceeding of IEEE biomedical engineering and informatics, pp 428–431

  20. Li Y, Yi X, Xu J, Li Y (2013) Wavelet packet denoising algorithm based on correctional wiener filtering. J Inf Comput Sci 10(9):2711–2718

    Article  Google Scholar 

  21. Li Z, Yu L, Trzasko JD, Lake DS, Blezek DJ, Fletcher JG, McCollough CH, Manduca A (2014) Adaptive nonlocal means filtering based on local noise level for CT denoising. Med Phys 41(1):011908

    Article  Google Scholar 

  22. Lu L, Jin W, Wang X (2015) Non-local means image denoising with a soft threshold. IEEE Sig Process Lett 22(7):833–837

    Article  Google Scholar 

  23. Lu H, Li Y, Mu S, Wang D, Kim H, Serikawa S (2017) Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet of Things Journal

  24. Lu H, Li B, Zhu J, Li Y, Li Y, Xu X, He L, Li X, Li J, Serikawa S (2017) Wound intensity correction and segmentation with convolutional neural networks. Concurr Comput Pract Experience 29(6):e3927

    Article  Google Scholar 

  25. Lu H, Li Y, Chen M, Kim H, Serikawa S (2018) Brain intelligence: go beyond artificial intelligence. Mobile Netw Appl 23(2):368–375

    Article  Google Scholar 

  26. Lu H, Li Y, Uemura T, Kim H, Serikawa S (2018) Low illumination underwater light field images reconstruction using deep convolutional neural networks. Future Generation Computer Systems

  27. Mustafa ZA, Kadah YM (2011) Multi resolution bilateral filter for MR image denoising. In: Proceeding on 1st Middle East conference on biomedical engineering (MECBME). Sharjah, pp 180–184

  28. Rabbani H (2009) Image denoising in steerable pyramid domain based on a local Laplace prior. Pattern Recog 42(9):2181–2193

    Article  Google Scholar 

  29. Rabbani H, Nezafat R, Gazor S (2009) Wavelet-domain medical image denoising using bivariate laplacian mixture model. IEEE Trans Biomed Eng 56(12):2826–2837

    Article  Google Scholar 

  30. Sendur L, Selesnick IW (2002) Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans Sig Process 50(11):2744–2756

    Article  Google Scholar 

  31. Serikawa S, Lu H (2014) Underwater image dehazing using joint trilateral filter. Comput Electr Eng 40(1):41–50

    Article  Google Scholar 

  32. Sharma A, Singh AK, Kumar P (2018) Combining haar wavelet and Karhunen-Loeve transform for robust and imperceptible data hiding using digital images. J Intell Syst 27(1):91–103

    Article  Google Scholar 

  33. Shen Y, Qing L, Shuqin L, Hou Ya-Li (2017) Wavelet-based total variation and nonlocal similarity model for image denoising. IEEE Sig Process Lett 24(6):877–881

    Article  Google Scholar 

  34. Shreyamsha Kumar BK (2013) Image denoising based on non-local means filter and its method noise thresholding. Springer J Sig Image Video Process 7(6):1211–1227

    Article  Google Scholar 

  35. Siegel MJ, Schmidt B, Bradley D, Suess C, Hildebolt C (2004) Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. J Radiol 233(2):515–522

    Article  Google Scholar 

  36. Thierry B, Florian L (2007) The SURE-LET approach to image denoising. IEEE Trans Image Process 16(11):2778–2786

    Article  MathSciNet  Google Scholar 

  37. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceeding on computer vision, pp 839–846

  38. Weisheng D, Xin L, Zhang D, Guangming S (2011) Sparsity-based image denoising via dictionary learning and structural clustering. In: Proceeding of IEEE conference on computer vision and pattern recognition (CVPR), pp 457–464

  39. Wenxuan S, Jie L, Minyuan W (2010) An image denoising method based on multiscale wavelet thresholding and bilateral filtering. Wuhan Univ J Natur Sci 15(2):148–152

    Article  MathSciNet  Google Scholar 

  40. Wu H, Zhang W, Gao D, Yin X, Chen Y, Wang W (2011) Fast CT image processing using parallelized non-local means. J Med Biol Eng 31(6):437–441

    Article  Google Scholar 

  41. Zear A, Singh AK, Kumar P (2017) Robust watermarking technique using back propagation neural network: a security protection mechanism for social applications. Int J Inf Comput Secur 9(1-2):20–35

    Google Scholar 

  42. Zheng X, Liao Z, Hu S, Li M, Zhou J (2013) Improving spatial adaptivity of nonlocalmeans in low-dosed CT imaging using pointwise fractal dimension. Computational and Mathematical Methods in Medicine, p 2013

  43. Zhu F, Carpenter T, Gonzalez DR, Atkinson M, Wardlaw J (2012) Computed tomography perfusion imaging denoising using Gaussian process regression. Phys Med Biol 57(12):183–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pardeep Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diwakar, M., Kumar, P. & Singh, A.K. CT image denoising using NLM and its method noise thresholding. Multimed Tools Appl 79, 14449–14464 (2020). https://doi.org/10.1007/s11042-018-6897-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6897-1

Keywords

Navigation