Skip to main content
Log in

Visual analytics of cellular signaling data

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Cellular signaling data is a type of traffic data, which contains rich spatio-temporal information. Rather than studying the trajectories of individuals, we propose a visual analytics methodology to analyze the crowd flows among a geographical network extracted from real-time cellular signaling data. We design a suite of visualization techniques to explore and reveal mobility patterns over the networks of spatiotemporal clustering. The feasibility of our approach was verified on a real real-time cellular signaling dataset in one week.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40 (1):200–210

    Article  Google Scholar 

  2. Darbari M, Kumar P, Rakesh S, Prakash S (2010) FRIX-traffic analyzer and transportation assistant. Int J Comput Sci Eng 2(4):1034–1040

    Google Scholar 

  3. Deville P, Linard C, Martin S, Gilbert M, Stevens FR, Gaughan AE, Blondel VD, Tatem AJ (2014) Dynamic population mapping using mobile phone data. Proc Natl Acad Sci 111(45):15888–15893

    Article  Google Scholar 

  4. Fan DP, Zhang SC, Wu YH et al (2018) Face sketch synthesis style similarity: a new structure co-occurrence texture measure. In: Proceedings of ACM multimedia conference (MM18). ACM, Seoul, Korea p 9

  5. Fumo A, Fiore M, Stanica R (2017) Joint spatial and temporal classification of mobile traffic demands. In: INFOCOM 2017-IEEE conference on computer communications, Atlanta, GA, USA May 1 - May 4, pp 1–9

  6. Gu J, Bae SJ, Min YC, Cheon KY (2010) Mobility-based handover decision mechanism to relieve ping-pong effect in cellular networks. In: Proceedings of the 16th Asia-Pacific conference on communications, pp 487–491

  7. Haklay M, Weber P (2008) Openstreetmap: user-generated street maps. IEEE Pervasive Comput 7(4):12–18

    Article  Google Scholar 

  8. Han Z, Johnson T, Zhang J et al (2017) Functional virtual flow cytometry: a visual analytic approach for characterizing single-cell gene expression patterns. BioMed Res Int 2017:1–9

    Google Scholar 

  9. Isaacman S, Becker R, Cceres R, Kobourov S, Martonosi M, Rowland J, Varshavsky A (2011) Identifying important places in peoples lives from cellular network data. In: proceedings of pervasive11. Springer Press, Berlin, pp 133–151

  10. Isaacman S, Becker R, Cceres R, Martonosi M, Rowland J, Varshavsky A, Willinger W (2012) Human mobility modeling at metropolitan scales. In: The 10th international conference on mobile systems, applications, and services. ACM, pp 239–252

  11. Kim DH, Hightower J, Govindan R, Estrin D (2009) Discovering semantically meaningful places from pervasive RF-beacons. In: Proceedings UBICOMP 2009: ubiquitous computing, international conference, UBICOMP 2009, Orlando, Florida, USA, September 30 - October 3, pp 21–30

  12. Lee JK, Hou JC (2006) Modeling steady-state and transient behaviors of user mobility: formulation, analysis, and application. ACM International Symposium on Mobile Ad Hoc Networking & Computing, pp 85–96

  13. Liao Y, Lam W, Bing L et al (2018) Joint modeling of participant influence and latent topics for recommendation in event-based social networks. Acm Trans Inf Syst 36(3):1–31

    Article  Google Scholar 

  14. Ma Y, Lin T, Cao Z, Li C (2015) Mobility viewer: an eulerian approach for studying urban crowd flow. IEEE Trans Intell Transp Syst 17(9):2627–2636

    Article  Google Scholar 

  15. Min Y, Li Y (2015) Vehicles recognition based on the size characteristics and the CURE clustering algorithm. In: IEEE international conference on signal processing, communications and computing (ICSPCC 2015), pp 1–5, Ningbo, Zhejiang, China

  16. Selassie D, Heller B, Heer J (2011) Divided edge bundling for directional network data. IEEE Trans Vis Comput Graph 17(12):2354–2363

    Article  Google Scholar 

  17. Steenbruggen J, Borzacchiello MT, Nijkamp P, Scholten H (2013) Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment: a review of applications and opportunities. GeoJournal 78(2):223–243

    Article  Google Scholar 

  18. Toole JL, Colak S, Sturt B, Alexander LP, Evsukoff A, Gonzlez MC (2015) The path most traveled: Travel demand estimation using big data resources. Trans Res Part C Emerg Technol 58:162–177

    Article  Google Scholar 

  19. von Landesberger T, Brodkorb F, Roskosch P, Andrienko N, Andrienko G, Kerrenr A (2016) Mobilitygraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans Vis Comput Graph 22(1):11–20

    Article  Google Scholar 

  20. Wang P, Hunter T, Bayen AM, Schechtner K, Gonzlez MC (2012) Understanding road usage patterns in urban areas. Sci Rep 2:1001

    Article  Google Scholar 

  21. Wu W, Xu J, Zeng H, Zheng Y (2016) Telcovis: visual exploration of co-occurrence in urban human mobility based on Telco data. IEEE Trans Vis Comput Graph 22(1):935–944

    Article  Google Scholar 

  22. Xiong H, Zhang D, Zhang D, Gauthier V (2012) Predicting mobile phone user locations by exploiting collective behavioral patterns. In: The 9th international conference on ubiquitous intelligence & computing and 9th international conference on autonomic & trusted computing (UIC/ATC). IEEE Computer Society Press, Los Alamitos, pp 164–171

  23. Zhang Y (2014) User mobility from the view of cellular data networks. In: The 33rd annual IEEE conference on computer communications. IEEE Computer Society Press, New York, pp 1348–1356

  24. Zhu T, Song Z, Wu D, Yu J (2016) A novel freeway traffic speed estimation model with massive cellular signaling data. Int J Web Serv Res 13(1):69–87

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China(No.61320106006, No.61532006, No.61877002) and the Beijing Municipal Natural Science Foundation (No.4162019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haisheng Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wei, Y., Huang, Y. et al. Visual analytics of cellular signaling data. Multimed Tools Appl 78, 29447–29461 (2019). https://doi.org/10.1007/s11042-018-6966-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6966-5

Keywords

Navigation