Skip to main content
Log in

Edge preserving mixed noise removal

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

To faithfully recover the clean images corrupted by additive white Gaussian noise (AWGN) and impulse noise (IN), a novel edge preserving image denoising algorithm is proposed. The low- and high-frequency components of the image are restored separately. The high-frequency components of the images are restored based on nonlocal self-similarity (NSS) learning from natural images. An energy minimization function is developed to combine the low- and high-frequency components into one model. Experiments demonstrate that the proposed method outperforms existing mixture noise removal methods in peak signal-to-noise ratio (PSNR), edges preservation and visual performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aharon M, Elad M, Bruckstein AM (2006) K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans Signal Processing 54(11):4311–4322

    Article  MATH  Google Scholar 

  2. Bovik AC (2010) Handbook of image and video processing. Academic press

  3. Brownrigg D (1984) The weighted median filter. Commun ACM 27(8):807–818

    Article  Google Scholar 

  4. Buades A, Coll B, Morel J-M (2005) A non-local algorithm for image denoising. IEEE Computer Society Conference on Computer Vision (CVPR), San Diegopp. 60–65

  5. Cai J, Chan RH, Nikolova M (2008) Two-phase approach for deblurring images corrupted by impulse plus gaussian noise. Inverse Problem Imag 2(2):187–204

    Article  MathSciNet  MATH  Google Scholar 

  6. Chan RH, Ho C-W, Nikolova M (2005) Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans Image Process 14(10):1479–1485

    Article  Google Scholar 

  7. Chang H, Yeung DY, Xiong YM (2014) Super resolution through neighbor embedding. Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, pp.275–282

  8. Chen C, Liu L, Chen L, Tang Y, Zhou Y (2015) Weighted couple sparse representation with classified regularization for impulse noise removal. IEEE Trans Image Process 24(11):4014–4026

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen T, Ma KK, Chen LH (1999) Tri-state median filter for image denosing. IEEE Trans Image Process 8(12):1834–1838

    Article  Google Scholar 

  10. Chen T, Wu HR (2001) Adaptive impulse detection using center weighted median filters. IEEE Signal Process Lett 8(1):1–3

    Article  Google Scholar 

  11. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  12. Dong YQ, Xu SF (2007) A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Process Lett 14(3):193–196

    Article  Google Scholar 

  13. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilboa G, Osher S (2008) Nonlocal operators with applications to image processing. Multisc Model Simul 7(3):1005–1028

    Article  MathSciNet  MATH  Google Scholar 

  15. Gu S, Zhang L, Zuo W, Feng X (2017) Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision. Int J Comput Vis 121(2):183–208

    Article  Google Scholar 

  16. Guo F, Zhang C, Zhang M (2018) Edge-preserving image denoising. IET Image Process 12(8):1394–1401

    Article  Google Scholar 

  17. Huang T, Dong W, Xie X, Shi G, Bai X (2017) Mixed Noise Removal via Laplacian Scale Mixture Modeling and Nonlocal Low-rank Approximation. IEEE Trans Image Process 26(7):3171–3186

    Article  MathSciNet  MATH  Google Scholar 

  18. Hwang H, Haddad RA (1995) Adaptive median filters: New algorithm and results. IEEE Trans Image Process 4(4):499–502

    Article  Google Scholar 

  19. Ji H, Huang S, Shen Z, Xu Y (2011) Robust video restoration by joint sparse and low rank matrix approximation. SIAM J Imag Sci 4(4):1122–1142

    Article  MathSciNet  MATH  Google Scholar 

  20. Ji H, Liu C, Shen Z, Xu Y (2010) Robust video denoising using low rank matrix completion. In Proc. IEEE Conf. on Comput. Vis. Pattern Recognit., pp. 1791–1798

  21. Jiang J, Zhang L, Yang J (2014) Mixed noise removal by weighted encoding with sparse nonlocal regularization. IEEE Trans Image Process 23(6):2651–2662

    Article  MathSciNet  MATH  Google Scholar 

  22. Ko SJ, Lee YH (1991) Center weighted median filters and their applications to image enhancement. IEEE Trans Circuits syst 38(9):984–993

    Article  Google Scholar 

  23. Li Y, Liu J, Yang W, Guo Z (2015) Neighborhood regression for edge-preserving image super-resolution. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1201–1205

  24. Li Y, Shen L, Dai D, Suter B (2011) Framelet algorithms for de-blurring images corrupted by impulse plus gaussian noise. IEEE Trans Image Process 20(7):1822–1837

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: Recognizing complex activities from sensor data. In: Proceedings of the 24th International Conference on Artificial Intelligence ( IJCAI'15), pp. 1617–1623, Buenos Aires

  26. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  27. Liu J, Tai X, Huang H, Huan Z (2013) A weighted dictionary learning model for denoising images corrupted by mixed noise. IEEE Trans Image Process 22(3):1108–1120

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu Y, Zhang L, Nie L,Yan Y, Rosenblum DS (2016) Fortune teller: Predicting your career path. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16), pp.201–207

  29. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Nonlocal sparse models for image restoration. IEEE International Conference on Computer Vision (ICCV), pp. 2272–2279

  30. Muja M, Lowe DG (2014) Scalable Nearest Neighbor Algorithms for High Dimensional Data. Pattern Analysis and Machine Intelligence 36(11):2227–2240

    Article  Google Scholar 

  31. Nieminen A, Heinonen P, Neuvo Y (1987) A new class of detail preserving filters for image processing. IEEE Trans Pattern Anal Mach Intell 9(1):74–90

    Article  Google Scholar 

  32. Nikolova M (2004) A variational approach to remove outliers and impulse noise. J Math Imag Vis 20:99–120

    Article  MathSciNet  MATH  Google Scholar 

  33. Pok G, Liu JC, Nair AS (2003) Selective removal of impulse noise based on homogeneity level information. IEEE Trans Image Process 12(1):85–92

    Article  Google Scholar 

  34. Rodríguez P, Rojas R, Wohlberg B (2012) Mixed gaussian-impulse noise image restoration via total variation. In Proc. IEEE. Int. Conf. Acoust. Speech Signal Process., pp. 1077–1080

  35. Sun T, Neuvo Y (1994) Detail-preserving median based filters in image processing. Pattern Recogn Lett 15(4):341–347

    Article  Google Scholar 

  36. Timofte R, Smet VD, Gool LV (2013) Anchored neighborhood regression for fast example based super-resolution. IEEE International Conference on Computer Vision (ICCV), pp. 1920–1927

  37. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. IEEE International Conference on Computer Vision (ICCV), pp. 839–846

  38. Xiao Y, Zeng T, Yu J, Ng M (2011) Restoration of images corrupted by mixed gaussian-impulse noise via l1–l0 minimization. Pattern Recogn 44(8):1708–1720

    Article  MATH  Google Scholar 

  39. Xu J, Zhang L, Zuo W, Zhang D, Feng X (2015) Patch group based nonlocal self-similarity prior learning for image denoising. IEEE International Conference on Computer Vision (ICCV), pp. 244–252

  40. Yan M (2013) Restoration of images corrupted by impulse noise and mixed gaussian impulse noise using blind inpainting. SIAM J Imag Sci 6(3):1227–1245

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang M, Desrosiers C (2017) Image denoising based on sparse representation and gradient histogram. IET Image Process 11(1):54–63

    Article  Google Scholar 

  42. Zhang L, Zhang L, Mou X, andZhang D (2011) Fsim: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang F, Zhang X, Qin XY, Zhang CM (2015) Enlarging Image by Constrained Least Square Approach with Shape Preserving. J Comput Sci Technol 30(3):489–498

    Article  MathSciNet  Google Scholar 

  44. Zhu Y, Zhang YN, Alan L, Yuille AL (2014) Single image super-resolution using deformable patches. Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, pp. 2917–2924

Download references

Acknowledgements

The authors would like to thank the reviewers for their invaluable comments. This work was supported partly by National Natural Science Foundation of China (No. 61772312, 61602277), NSFC Joint Fund with Zhejiang Integration of Informatization and Industrialization under Key Project(U1609218) and Natural Science Foundation of Shandong Province, China (No. ZR2017MF033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiming Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Zhang, C. Edge preserving mixed noise removal. Multimed Tools Appl 78, 16601–16613 (2019). https://doi.org/10.1007/s11042-018-7004-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-7004-3

Keywords

Navigation