Skip to main content
Log in

Gamma correction enhancement of infrared night vision images using histogram processing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents two proposed approaches for enhancing the visibility of the infrared (IR) night vision images. The first approach is based on merging gamma correction with histogram matching (HM). On the other hand, the second approach depends on merging gamma correction with contrast limited adaptive histogram equalization (CLAHE). The HM depends on a reference visual image for converting IR night vision images into images with better visual quality. Quality metrics such as entropy, average gradient, and Sobel edge magnitude are used for performance evaluation of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashiba HI, Mansour HM, Ahmed HM, El-Kordy MF, Dessouky MI, El-Samie FEA (2018) Enhancement of infrared images based on efficient histogram processing. Wirel Pers Commun 99:619–636. https://doi.org/10.1007/s11277-017-4958-9

    Article  Google Scholar 

  2. Bai X (2015) Morphological infrared image enhancement based on multi-scale sequential toggle operator using opening and closing as primitives. Infrared Phys Technol 68:143–151

    Article  Google Scholar 

  3. Bai X, Liu H (2017) Edge enhanced morphology for infrared image analysis. Infrared Phys Technol 80:44–57

    Article  Google Scholar 

  4. Balntas V, Johns E, Tang L, Mikolajczyk K (2016) PN-Net: Conjoined triple deep network for learning local image descriptors. CoRR abs/1601.05030

  5. Dai S, Liu Q, Li P, Liu J, Xiang H (2015) Study on infrared image detail enhancement algorithm based on adaptive lateral inhibition network. Infrared Phys Technol 68:10–14

    Article  Google Scholar 

  6. Donahue J, Jia Y, Vinyals O, Ho_man J, Zhang N, Tzeng E, Darrell T (2014) Decaf: A deep convolutional activation feature for generic visual recognition. In:ICLR

  7. Fan B, Kong Q, Trzcinski T, Wang Z, Pan C, Fua P (2014) Receptive _elds selection for binary feature description. IEEE Trans Image Process 23(6):2583–2595

    Article  MathSciNet  MATH  Google Scholar 

  8. Girshick RB, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR

  9. Gonzalez RC, Woods RE (2018) Pearson, Digital Image Processing 4th edition, Prentice Hall

  10. Gupta S, Mazumdar SG (2013) Sobel edge detection algorithm. International Journal of Computer Science and Management Research 2(2):2278–733X

    Google Scholar 

  11. Jung J, Gibson J (2006) The interpretation of spectral entropy based upon rate distortion functions, in IEEE International Symposium on Information Theory, pp. 277–281

  12. Li Y, Zhang Y, Geng A, Cao L, Chen J (2016) Infrared image enhancement based on atmospheric scattering model and histogram equalization. Opt Laser Technol 83:99–107

    Article  Google Scholar 

  13. Liang K, Ma Y, Xie Y, Zhou B, Wang R (2012) A new adaptive contrast enhancement algorithm for infrared images based on double plateaus histogram equalization. Infrared Phys Technol 55:309–315

    Article  Google Scholar 

  14. Liu N, Chen X (2016) Infrared image detail enhancement approach based on improved joint bilateral filter. Infrared Phys Technol 77:405–413

    Article  Google Scholar 

  15. Liu B, Pan J, McKay RI (2009) Entropy-based metrics in swarm clustering. Int J Intell Syst 24:989–1011

    Article  MATH  Google Scholar 

  16. Pratt K W (1991). Digital Image Processing, Second Ed. Wiley, New York

  17. Qi W, Han J, Zhang Y, Bai L-f (2016) Infrared image enhancement using cellular automata. Infrared Phys Technol 76:684–690

    Article  Google Scholar 

  18. Raghatate RP, Rajurkar SS, Waghmare MP, Ambatkar PV (2013) Night vision techniques and their applications. International Journal of Modern Engineering Research 3(2):816–820

    Google Scholar 

  19. Saad MA, Bovik AC, Charrier C (2012) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Transaction on Image Processing 21(8):3339–3352

    Article  MathSciNet  MATH  Google Scholar 

  20. Simo-Serra E, Trulls E, Ferraz L, Kokkinos I, Fua P, Moreno-Noguer F (2015) Discriminative learning of deep convolutional feature point descriptors. In: ICCV

  21. Song Q, Wang Y, Baia K High dynamic range infrared images detail enhancement based on local edge preserving filter. Infrared Phys Technol. https://doi.org/10.1016/j.infrared.2016.06.023,2016

  22. Thakur P, Thakur RS (2016) An Overview of Various Edge Detection Techniques used in Image Processing, International Journal of innovations in Engineering and technology, 2319–1058

  23. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: ECCV

  24. Zhang S, Li P, Xu X, Li L, Chang CC (2018) No-reference image blur assessment based on response function of singular values. Symmetry 10(304):2–15

    Google Scholar 

  25. Zhao J, Qu S (2011) The fuzzy nonlinear enhancement algorithm of infrared image based on Curvelet transform. Procedia Engineering 15:3754–3758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Ashiba.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashiba, M.I., Tolba, M.S., El-Fishawy, A.S. et al. Gamma correction enhancement of infrared night vision images using histogram processing. Multimed Tools Appl 78, 27771–27783 (2019). https://doi.org/10.1007/s11042-018-7086-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-7086-y

Keywords

Navigation