Skip to main content
Log in

Active contour with modified Otsu method for automatic detection of polycystic ovary syndrome from ultrasound image of ovary

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) disorder is identified by the presence of a number of follicles present in the ovary of female reproductive system. Ultrasound imaging of the ovary contains essential information about the size, number of follicles and its position. In real time, the detection of PCOS is a difficult task for radiologists due to the various sizes of follicles and is highly connected with blood vessels and tissues. This often results in error diagnosis. For preprocessing various standard filtering techniques are applied on ovary image. Based on the performance, appropriate filter is chosen to remove the noise from the image. This paper presents an effectual active contour with modified Otsu threshold value to automated discovery of follicles from the ultrasound images. The performances of the proposed method illustrate the betterments of the proposed approach over other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdel-Basset M, Manogaran G, Fakhry AE, El-Henawy I (2018) 2-levels of clustering strategy to detect and locate copy-move forgery in digital images. Multimed Tools Appl, 1–19

  2. Adam B, Joop SE, Laven S-LT, Dewailly D (2003) Ultrasound assessment of the polycystic ovary: international consensus definitions. Hum Reprod 9(6):505–514

    Google Scholar 

  3. Affiliates of Medifocus.com (2007) Medifocus guidebook: polycystic ovary syndrome. Medifocus.com, Inc

  4. Bal and H. Mohan (2007) Malignant transformation in mature cystic Teratoma of the ovary: report of five cases and review of the literature. Arch Gynecol Obstet 275(3):179–182

    Article  Google Scholar 

  5. Battaglia C, Artini PG, Genazzani AD, Gremigni R, Slavatori MR, Sgherzi MR (1997) Color Doppler analysis in oligo and Amenorrheic women with polycystic ovary syndrome. Gynecol Endocrinol 11(2):105–110

    Article  Google Scholar 

  6. Caselles V, Kimmel R, Sapiro G (1997) On geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  7. Chan T, Vese L (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  8. Courant R, Friedrichs K, Lewy H (1928) Uber die partiellenDifferenzengleichungen der mathematischenPhysik. MathematischeAnnalen 100(1):32–74. http://en.wikipedia.org/wiki/Courant%E2%80%93Friedrichs%E2%80%93Lewy_condition

    MATH  Google Scholar 

  9. Deng Y, Wang Y, Chen P (2008) Automated detection of polycystic ovary syndrome from ultrasound image. 30th annual international IEEE engineering in medicine and biology society conference Vancouver, British Columbia, Canada: 20-24

  10. Deng Y, Wang Y, Shen Y (2011) An automated diagnostic system of polycystic ovary syndrome based on object growing. J Artif Intell Med Elsevier Sci Publishers Ltd Essex, UK 51(3):199–209

    Google Scholar 

  11. Finn S, Glavin M, Jones E (2011) Echocardiographic speckle reduction comparision. IEEE Trans Ultrason Ferroelectr Freq Contrl 58(1):82–101

    Article  Google Scholar 

  12. Frost VS, Stiles JA, Shanmugam KS, Holtzman JC (1982) A model for radar image & its application to adaptive digital filtering for multiplicative noise. IEEE Trans Pattern Anal Mach Intell PAMI-4(2):157–166

    Article  Google Scholar 

  13. Gharbia R, Hassanien AE, El-Baz AH, Elhoseny M, Gunasekaran M (2018) Multi-spectral and panchromatic image fusion approach using stationary wavelet transform and swarm flower pollination optimization for remote sensing applications. Futur Gener Comput Syst 88:501–511

    Article  Google Scholar 

  14. Gonzalez RC, Woods RE (2002) Digital image processing, Second Edition, Pearson Edu

  15. Hanna MD, Chizen DR, Pierson R (1994) Characteristics of follicular evacuation during human ovulation. J Ultrasound Obstetr Gynecol 4(6):488–493

    Article  Google Scholar 

  16. Hiremath PS, Jyothi Tegnoor R (2011) Automatic detection of follicles in ultrasound images of ovaries using active contours method. Int J Serv Comput Comput Intell 1(1):26–30

    Google Scholar 

  17. Hiremath PS, Tegnoor JR (2010) Automatic detection of follicles in ultrasound images of ovaries using edge based method. International Journal of Computer Applications Special Issue on Recent Trends in Image Processing and Pattern Recognition: 15–16

  18. Iyapparaja M, Sivakumar P (2017) Metrics based evaluation for disease affection in distinct cities. Res J Pharm Tech 10(8):2487–2491

    Article  Google Scholar 

  19. Iyapparaja M, Tiwari M (2017) Security policy speculation of user uploaded images on content sharing sites. IOP Conf Ser: Mater Sci Eng 263:042018. https://doi.org/10.1088/1757-899X/263/4/042019 pp-1-8

    Article  Google Scholar 

  20. Kelsey TW, Wallace WHB (2012) Ovarian volume correlates strongly with number of non growing follicles in the human ovary. Obstet Gynecol Int 2012:1–5

    Article  Google Scholar 

  21. Kuan DT, Sawchuk AA, Strand TC, Chavel P (1985) Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans Pattern Anal Mach Intell PAMI-7(2):165–177

    Article  Google Scholar 

  22. Lee JS (1980) Digital image enhancement and noise filtering by using local statistics. IEEE Trans Pattern Anal Mach Intell PAMI-2(2):165–168

    Article  Google Scholar 

  23. Mehrotra P, Chakraborty C (2011) Automated ovarian follicle recognition for polycystic ovary syndrome. International Conference on Image Information Processing: 1–4.

  24. Michailovich OV, Tannenbaum A (2006) Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 53(1):64–78

    Article  Google Scholar 

  25. Murugan NS, Devi GU (2018) Cluster Comput. doi:https://doi.org/10.1007/s10586-018-2158-3

  26. Murugan NS, Usha Devi G (2018) Detecting streaming of twitter spam using hybrid method. Wirel Pers Commun : 1-22

  27. Nicolae MC (2010) Comparative approach for speckle reduction in medical ultrasound images. Romanian J Bio-Phys 20(1):13–21

    MathSciNet  Google Scholar 

  28. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  29. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybernet 9(1):62–66

    Article  Google Scholar 

  30. Pache TD, WWladimiroff J, Hop WC, CFauser B (1992) How to discriminate between Normal and polycystic ovaries: transvaginal US study. Radiology 183(2):421–423

    Article  Google Scholar 

  31. Pellicer A, Gaitán P, Neuspiller F, Ardiles G, Albert C, Remohí J, Simón C (1998) Ovarian follicular dynamics: from basic science to clinical practice. J Reprod Immunol 39(1-2):29–61

    Article  Google Scholar 

  32. Phillips C (1999) The level-set method. MIT Undergraduate Journal of Mathematics

  33. Ratha TJ, Ramar K (2010) A modified method for speckle noise removal in ultrasound medical images. Int J Comput Electric Eng 2(1):54–58

    Google Scholar 

  34. Sudha S, Suresh GR, Sukanesh R (2009) Speckle noise reduction in ultrasound images by wavelet thresholding based on weighted variance. Int J Comput Theor Eng 1(1):7–12

    Article  Google Scholar 

  35. Yamanaka Y, Tateiwa Y (2005) Preoperative diagnosis of malignant transformation in mature cystic Teratoma of the ovary. Eur J Gynecologic Oncol 26(4):391–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gopalakrishnan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, C., Iyapparaja, M. Active contour with modified Otsu method for automatic detection of polycystic ovary syndrome from ultrasound image of ovary. Multimed Tools Appl 79, 17169–17192 (2020). https://doi.org/10.1007/s11042-019-07762-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07762-3

Keywords

Navigation