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Abstract

Large-scale high-speed URL matching is a key operation in many network security systems
and surveillance applications in Wireless Sensor Networks. Classic string matching algorithms
are unsuitable for large-scale URL filtering due to speed or memory consumption. This paper
proposes an extend Wu-Manber algorithm (XWM) which takes advantage of the encoding
characteristics of the URL greatly to improve the matching performance of the algorithm. It
first adopts the pattern string window selection method to optimize Wu-Manber’s hash
process, and then combines hash tables and associative containers to optimize the string
comparison process. The experimental results on actual 10 million patterns show that XWM
can achieve speeds that are twice as fast as traditional algorithms, especially when the shortest
pattern string length is longer, it is more advantageous.

Keywords Multi-string matching - URL matching - Wu-Manber algorithm

1 Introduction

The Hypertext Transfer Protocol (HTTP) is one of the most widely used internet protocols at
present. In addition to the traditional desktop applications, many mobile applications use the
HTTP protocol for data transfer [17]. The URL (uniform resource locator) is the most
important component of the HTTP protocol, identifying the location of the requested resource.
Filtering harmful URLs can effectively control and manage access to illegal and harmful
information. Detection of harmful URL information in real-time network traffic is an important
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element of current security systems, it has a wide range of applications in the field of network
information security, including traditional network intrusion detection/defense systems (IDS/
IPS) and surveillance applications in Wireless Sensor Networks [5, 6].

However, due to a large number of URL rules, traditional string matching algorithms
cannot successfully filter tens of millions of URLs in real time. Measures need to be taken
to improve and optimize the characteristics of URLs for effective string matching. Based on
the classic Wu-Manber multi-pattern string matching algorithm [18], we propose a new XMW
algorithm that augments Wu-Manber with the characteristics of URL data to improve its
matching performance, especially for longer lengths of the shortest pattern string. The second
section of this paper introduces related work for large-scale URL pattern string matching. The
third section describes the improvement measures and algorithms proposed in this paper in
detail. The fourth section experimentally evaluates the improved algorithm against other string
matching algorithms. The fifth section is the conclusion of this article.

2 Related work

The surveillance application using wireless networks acquires real-time and accurate multi-
media information conveniently, and it is widely used in IoTs [10], [oVs [16], and so on. Most
of wireless network researches focus on the data transport and management [13, 14], the
private-preserving [3, 4, 21] and network attack [12, 15], which are also suitable for wireless
multimedia surveillance networks. In addition, for the multimedia surveillance application, the
illegal and harmful multimedia data should be prevented according to the multimedia content
or the URL of content. Our work focuses on the latter method, i.e., filter harmful multimedia
URLSs via URL matching.

URL matching is a typical application of pattern string matching. However, the widespread
use of the HTTP protocol means that the number of rule sets for matching URLs is huge,
reaching tens of millions of patterns of visible characters. There are two primary matching
methods for URLs. One uses classic pattern string matching methods directly. The other
improves classic pattern string matching methods by mining the characteristics of the URL.

There are three general methods for classical pattern-based string matching that offer
possibilities for our purposes: automata, hash tables, and bit parallel.

Typical representatives of automata-based algorithms such as the Aho-Corasick automata
(AC algorithm) [1] and Factor oracle automata (SBOM algorithm) [2]. The matching perfor-
mance of this type of algorithm is stable and unaffected by the length of the pattern string and
character distribution. The time complexity of such algorithms is proportional to the length of
the text string to be matched. When applied to large-scale URL string matching, this type of
algorithm consumes a large amount of memory for automata storage. In response to this issue,
Xiong G et al. [19] proposed a hybrid automaton construction algorithm based on data access
and using statistical strategies based on the AC algorithm. The result of Real world testing
showed that it was only able to make a reduction in memory use about 5%.

Hash-based multi-pattern string matching algorithms use hash tables and add character
block technology to increase the possibility that the text string and the pattern string do not
match, thereby improve the chance of jumping. The Wu-Manber algorithm [18] is the typical
representative of this type of algorithm, achieving better performance with 100,000 random
strings. However, URL strings have semantic features; the distribution of characters is not
random. Therefore, the Wu-Manber algorithm offers weak performance due to a high rate of
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hash collisions when matching URLs. Zhang P et al. [23] proposed the HashTrie algorithm,
which uses recursive hashing technique to store the processed pattern string set information in
a bit vector and a rank operation for quick verification. This algorithm uses 0.4% of the
memory overhead of the AC algorithm but offers actual matching performance that is only
about half that of the AC algorithm. The performance makes it unsuitable for high-speed
matching applications.

Bit parallel algorithms simulate the matching process of automata by using bit vectors.
Operations on the bit vectors replace the state jumps of the automata, and execute in parallel
using a machine word. The representatives of this kind of algorithms are the shift-and and
shift-or algorithm [8, 9]. However, the machine word length limits this type of algorithm,
which is effective only with small-scale pattern strings. Salmela L et al. used g-gram
technology to expand the shift-or algorithm [11] (SOG). This approach uses g-gram technol-
ogy to serialize multiple-pattern strings into a simple single pattern string and then uses fast
single-pattern string matching technology to filter text that cannot be matched quickly. This
technique achieves better results with 10,000 to 100,000 pattern strings but is still unsuitable
for large-scale matching.

Research into large-scale URL matching has focused primarily on improving the classic
algorithms and enhancing matching performance by making full use of the character sets and
coding characteristics of URLs. Liu YB et al. [7] proposed a filtering-based algorithm based on
the classic SOG algorithm (SOGOPT) for large-scale URLS flitting. It combines two optimi-
zations: pattern string window selection and packet reduction, which greatly improve the
matching performance of the algorithm. However, this algorithm is limited by the system’s
machine word length and the shortest pattern string length. When the machine word length is
shorter or the shortest pattern string length of the pattern set is longer, the number of pattern
strings that can be searched concurrently is reduced, which reduces the performance of the
algorithm. Yuan Z et al. [22] proposed a multi-pattern matching algorithm which employs
Two-phase hash, Finite state machine and Double-array storage to eliminate the performance
bottleneck of blacklist filter (TFD). However, since the trie data structure is used in the
algorithm, the memory consumption of the algorithm and the double-array AC automata have
a considerable magnitude, which limits the algorithm’s application. Xu DL [20] proposed
partitioning URLs by “/” and “.”. This algorithm achieved higher matching performance based
on URLs filtering. However, this method only supports block URL prefix matching and does
not support substring matching, which limits the scope of application.

In summary, scholars have researched large-scale URL matching in recent years, but there
is still a lack of effective algorithms. The following section introduces a new algorithm for
more effective URL matching of multiple patterns.

3 The XWM algorithm

Based on the Wu-Manber algorithm, our algorithm optimizes the characteristics of URL data
and proposes an algorithm called XWM (eXtend Wu-Manber) for large-scale URL pattern
string matching. The XWM algorithm improves matching performance with three optimiza-
tions methods.

The first optimization is the adoption of the pattern string window selection technique
proposed by Liu YB et al. [7]. This technique selects a unique and representative window for
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each pattern string to represent each pattern string uniquely. This significantly reduces the
probability of a hashing function placing multiple pattern strings in the same bucket.

The second optimization is the adoption of a two-phase hash. Our algorithm uses two
compressed hash tables to store the jump values for the matching process. It can significantly
reduce memory usage while ensuring uniform hashing.

The third optimization is the use of associative containers to organize conflicting mode
strings and remove the need for the prefix table in the Wu-Manber algorithm. The associative
container locates key values quickly and significantly reduces the number of comparisons at
the time of verification.

This section analyzes the shortcomings of the Wu-Manber algorithm in large-scale URL
matching in Section 3.1. Then three optimization techniques used in this paper are introduced
in Sections 3.2, Section 3.3 and Section 3.4, respectively. Finally, the preprocessing and
matching process of the proposed algorithm is given in Section 3.5.

3.1 Analysis of the Wu-Manber algorithm

The Wu-Manber algorithm is a classical multi-pattern string matching algorithm proposed by
Sun Wu in 1994. The algorithm uses the idea of a “Bad Character” to jump. In the
preprocessing phase, three hash tables are created: the shiff table, the hash table, and the prefix
table. When scanning a text string, the shift table determines the number of characters to jump
backwards based on the read string. The hash table stores the pattern strings with the same tail
block character hash value. The prefix table stores the first block character hash value of the
pattern string with the same tail block character hash value. In the matching process, if the
current text string’s shift value is zero, it indicates that a match is possible, and further
verification is needed. In this case, the prefixes of the same pattern strings of the tail block
are compared to the ones in the prefix table. If those match, the algorithm evaluates them one
by one in the hash table for the given tail block to find a match. Figure 1 shows the shift table,
the hash table, and the prefix table of patterns {abcde, bcbde, adcab}.

shift prefix patterns

de=0

bd=1

Fig. 1 the shifi table, the hash table, and the prefix table of patterns {abcde, bebde, adcab}

=3
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When the Wu-Manber algorithm is directly applied to large-scale URL matching, the
matching performance is low, mainly for two reasons. The first reason is the severity of hash
collisions. The Wu-Manber algorithm uses 2 to 3 bytes as character block, which is appropriate
for matching small and medium hash strings when hashing. Hash collisions increase with the
size of the pattern strings. Additionally, URLs have many common prefixes and suffixes (for
example, “www?”, “com”, “cn”, etc.). The Wu-Manber algorithm uses the leftmost m strings of
the pattern string as the matching window. Since many pattern strings have the same matching
windows, hash collisions become serious.

The second reason is that accurate calibration takes a long time. In the course of matching,
the Wu-Manber algorithm enters the precise verification phase when the shift value is zero.
Since the conflicting pattern string is stored in the hash table as a single-linked list, it is
necessary to traverse the single-linked list to determine a match when verifying. As just noted,
URLSs often have the same prefixes, resulting in a conflicting linked list with the same prefixes
is very long. Thus, it requires significant CPU time when traversing the list to exact matches.

3.2 Pattern string window selection

Liu YB et al. [7] proposed the pattern string window selection technique for optimizing the
SOG algorithm. This optimization technique is suitable to the Wu-Manber algorithm as well.
Here we select the length m of the shortest pattern string as the matching window size as well
as the original Wu-Manber algorithm. However, we cannot use the leftmost m characters of
each pattern string as the window of each pattern string, since URLSs have an uneven character
distribution as a result of common prefixes and suffixes, which may result in a large number of
pattern strings having the same matching window. The pattern string window selection
technique selects a unique and representative window for each pattern string. The uniqueness
reduces hash collisions. Our algorithm uses this technique.

For example, consider pattern string set P = {google.com, google.com.hk, google.com.tw,
google.com.jp, google.com.tr}. If the leftmost 10 characters are used as the window for all
pattern strings, all pattern string sets will have the same matching window google.com. All five
pattern strings in the set hash into the same bucket regardless of the hash function. Using the
window selection technique to process the pattern string set yields a matching window for each
pattern string as shown in Table 1. Each pattern string has a different matching window, which
reduces the probability of hash collisions.

3.3 Two-phase hash
The original Wu-Manber algorithm selects the leftmost B characters, usually two or three of

each pattern string as a hash block. The algorithm uses B =2 when the pattern string size is
small and B=3 when the pattern string size is large. More generally,B = log|5(2 * m * r),

Table 1 An example of window

selection for each string Pattern string Window
google.com google.com
google.com.hk ogle.com.h
google.com.tw gle.com.tw
google.com.jp ogle.com.j
google.com.tr gle.com.tr
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where | X is the size of the character set (generally taken as 256, the size of the extended ASCII
table), and 7 is the number of pattern strings. The hash table size depends on B. Larger values
of B improve the matching performance of the algorithm but seriously increase the memory
usage of the hash table. For example, when B =4, the hash table size is 24*8, which is 4GB.

Our algorithm does not use a constant B but uses the formula B = am to determine the size
of B dynamically, where a (0 < o< 1) is a factor that determines the size of B. Our algorithm
uses two compressed hash tables to improve the matching performance of the algorithm while
keeping the memory consumption low. We refer to these two hash tables as the shifi table and
the hash table. The shifi table and the hash table have 2™ and 2" entries and use hash functions
hy and hj, all respectively. Function 4; maps a character block with length B into a value of m
binary bits, and /, maps a character block with length B into a value of » binary bits. We use
the shifi table to determine the number of characters to skip when scanning the text string. The
hash table organizes the pattern strings with tail block characters that hash to the same value.

In fact, if the currently validated character block never appears in the other pattern
strings or the right end of the pattern string matching window, the current matching
sliding window can be moved back a greater distance. For this reason, we add a skip
value to the hash table for accurate verification of backwards jumps. In the matching
process, h; first calculates the last B character strings in the current matching window. If
the corresponding value in the shift table is not zero, the backward jump is performed.
Alternatively, a value of zero indicates that there may be a match. At this time, &,
calculate the hash value of the last B character strings in the current matching window
and checks the corresponding table entries in the hash table. If there are conflicting
pattern strings, the algorithm performs an exact verification and uses the skip value after
verification to shift (jump) the matching window of the current text backwards. Other-
wise, the current match window is jumped backward according to the skip value in the
hash table entry.

3.4 Using associative containers to organize conflicting nodes

In the Wu-Manber algorithm, potential matches found with the prefix table require
verification to determine whether an identical pattern string matches by traversing the
corresponding conflicting linked list of the hash table. The one-by-one string comparison
process is extremely time-consuming. To reduce the number of verifications and make full
use of the windows described in Section 3.2, we use an associative container to organize
the lists for conflicting nodes in the hash table and omit the prefix table of the Wu-Manber
algorithm.

An associative container is a type of data structure that stores and retrieves elements
efficiently through key values, typically using a balanced binary tree or hash table. We
used both forms to implement the XWM-Tree and XWM-Hash algorithms for the sake of
comparison (see Section 4). Key value construction is central to the use of associative
containers. The prefix table in Wu-Manber stores the character hash value of the first block
of the pattern strings with the same tail block character hash value. To replace the prefix
table, we use the prefix’s hash value of each pattern string matching window as the key
value of each pattern string. Thus, the associative container can completely replace the
function of the prefix table without affecting the behavior of the algorithm. Since only the
pattern strings with the same key value need verification using the container, and the
container facilitates a fast search, the time required for verification decreases significantly.

@ Springer



Multimedia Tools and Applications (2020) 79:16245-16263 16251

3.5 Algorithm description

Our algorithm consists of two stages: a preprocessing phase and a scanning phase. The
preprocessing phase performs the following steps. First, it determines the representative
matching window for each pattern string using the window selection technique. Second, it
generates the shift and hash tables according to the suffix character blocks of each pattern
string matching window. Third, it calculates the key value according to the prefix string of the
matching window and inserts each pattern string into the corresponding associative container
in the hash table.

Figure 2 shows a diagram of preprocessing, with gray-shaded elements representing
the matching window selected for each pattern string. Light gray indicates the portion
used to calculate the tail block of the pattern string window for the shift and hash tables.
Dark gray indicates the portion used to calculate the prefix strings of the pattern string
window for the corresponding key value. The map field in the hash table stores a pointer
to the associative container. With the pointer and the calculated key value, pattern strings
can be inserted separately into the corresponding entry in the hash table.

The scanning phase begins after the preprocessing phase completes. Algorithm 1
presents a pseudo-code description of the scanning and matching process. The matching
process needs to maintain a matching window of size m. Lines 3 through 12 use the
suffix string of the current text matching window to calculate the shift value. If the shift
value is not zero, the current text is skipped backwards; lines 13 through 18 deal with the
case where the shift value is zero. At this time, a hash value is calculated using the suffix
string of the matching window of the current text. If the associative container is not
empty, the prefix hash value of the matching window used as the key value.

m=10, B=9, keysize of map= 4

|

: o o g 1 e c o m google.com

: g o g 1 e c o | m h k google.com.hk

: ’ g o o 1 e o @ o m . t w google.com.tw

: g o g 1 € . @© o m . ] P google.com.jp

hl : ’ g o o 1 ® . @ o m 5 t r google.com.tr
I

| f—————

' |

: 1+ shift table | 12: hash table associative container:map

|

: hl index(size=2") shift = h2 index(size=2"") skip map(hash or balanced binary tree)

: hl(gle.com.t) = 166125069 1 h2(le.com.tr) = 13152836 2 [map(gle.), google.com.tr]

— = hl(le.com.tr) = 97038916 0 h2(gle.com.j) = 15130115 2 [map(ogle), google.com.jp]
hl(ogle.com.) = 64030594 1 h2(le.com.tw) = 13152841 2 [map(gle.) , google.com.tw]
hl(gle.com.j) = 166125059 0 h2(gle.com.h) = 15130113 2 [map(ogle) , google.com.hk]
hl(le.com.tw) = 97038921 0 h2(oogle.com) = 7668715 2 [map(goog), google.com]
hl(gle.com.h) = 166125057 0 h2(google.co) = 1768945 1 NULL PTR
hl(google.co) = 203095537 1 h2(gle.com.t) = 15130125 1 NULL PTR
hl(oogle.com)= 10833201 0 h2(ogle.com.) = 13698946 1 NULL PTR

others=m — B + 1 2 others=m - B + 1 2 NULL PTR

Fig. 2 Pattern string preprocessing diagram
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Comparisons are performed by searching the associative containers with the key value.
Line 19 is the process of jumping backwards after performing an exact check.

Algorithm 1: Matching process

input: fext (text represents the content to be scanned)

1: window«— text + m - 1, text_end<«—text + len(text)

2: while window < text _end do

3:

RS AR A

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

hindex<— hl(window)
shift value<—shift{ hindex]
while shift value<—0 do
window<—window + shift value
if window > end then
return
end if
hindex<—h1(window)
shift_value«— shift{ hindex]
end while
hindex<—h2[window)
skip<—hash[hindex].map
if hash[hindex].map # null then
key<«—h2(window - B)
find match hash[hindex].map|key]
end if

window<—window + skip

20: end while

Algorithm 1 Scanning and matching the text

Compared with the original Wu-Manber algorithm, our methods first use hash table to
replace the original shift table in Wu-Manber, which allows the algorithm to use a larger B and
reduce the conflict in each hash bucket. Then use a heterogeneous hash table and associated
container to replace the prefix table in Wu-Manber, in this way, our algorithm speeds up the
matching process of string when encountering hash conflicts.

4 Experimental evaluation

In order to compare and explain the performance of the proposed algorithm, we selected a
representative algorithm from each type of the classical matching algorithms according to their
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Table 2 Comparison of the spatial complexity and time complexity in different algorithms

XWM-HASH XWM-TREE AC SOGOPT TFD
The time complexity O(n) On) Om) Om(l + p’'(rG)logr) Om)
The spatial complexity O(|P|) O(P|) O(|P|) ow|Y]9) O(|P|)

principles to be used as different comparisons. In this way, the auto-based AC algorithm,
HASH-based TFD algorithm and Bit parallel-based SOGOPT algorithm, which can also
support large-scale rule sets, were selected and implemented.

We compared the speed and memory consumption of the two variants of our algorithm,
XWM-Tree and XWM-Hash, with the SOGOPT algorithm (using 64-bit machine word
length), the TFD algorithm, and the double-array AC algorithm (da_ac).

The spatial complexity and time complexity of these algorithms are shown in Table 2:

Where # is the length of the text to be matched, | P| represents for the sum of the length of
all the patterns, | Y| is the character set size, r is the number of pattern strings in the rule set P, G
is the number of pattern string set packets in the SOG algorithm, and p’ is the probability of
entering the check in the SOG algorithm.

We also discussed the effect of the shortest pattern string length on the algorithm. We set
a=0.75, m=28, and n =24 in the XWM-Tree and XWM-Hash algorithms.

4.1 Experimental data and experimental environment
We used a list of approximately 80 million URLs (15 GB) taken from a backbone router as our
strings to test and extracted more than 10 million pattern strings from it for the pattern sets.

Our experimental hardware and software environment was as follows: Intel Xeon E5-2650
v3 CPU at 2.3GHz, 32 GB of memory, and the Red Hat Enterprise Linux Server release 7.0

60
50
40

3

2
: |
1 2 3 4 5 6 7 8 9 10

Rule number (Million)
B xwm-tree M sogopt M xwm-hash Etfd mda_ac

Speed (MB/s)
o

o

o

Fig. 3 Comparison of speeds of different algorithms when the shortest pattern string length is 6
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1 2 3 4 5 6 7 8 9 10
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[
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Hxwm-tree Msogopt Mxwm-hash Btfd Bda_ac

Fig. 4 Comparison of speeds of different algorithms when the shortest pattern string length is 8

(Maipo) operating system with kernel version is 3.10.0-123.e17.x86_64. All code was written
in C++, compiled with g++ 4.8.2 using -O3 optimization during compilation. All programs run
single-threaded.

4.2 Experimental results and analysis

Figures 3, 4, 5, 6, 7 and 8 show that both XWM-Tree and XWM-Hash had higher matching
performance than other algorithms. When the shortest pattern string length is 8, XWM-Tree,

60
50

4

o

3

20
S TYAARLY
00 A0 00 T T A

1 2 3 4 5 6 7 8 9 10

Rule number (Million)

o

Speed (MB/s)

o O

Hxwm-tree Msogopt Mxwm-hash Btfd Bda_ac
Fig. 5 Comparison of speeds of different algorithms when the shortest pattern string length is 10
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o
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Fig. 6 Comparison of speeds of different algorithms when the shortest pattern string length is 12

XWM-Hash, and SOGOPT had roughly equivalent matching speeds when using 10 million
pattern strings. All of them had higher matching speeds than the double-array AC algorithm
and TFD algorithm. The advantages of our algorithm become clearer when the length of the
shortest pattern string is longer. Both XWM-Tree and XWM-Hash had matching speeds about
twice that of other algorithms with the longer shortest pattern string lengths.

However, Performance of the SOGOPT algorithm gradually decreased as the length of the
shortest pattern string increased leading to the decreasing number of groups of packet
reduction and the increasing number of verifications. The AC and TFD algorithms were less

80

70

o 10 0 O B
1 2 3 4 5 6 7 8 9 10

Rule number (Million)

o Speedvery
o o o

[
(=)

B xwm-tree M sogopt M xwm-hash Etfd mda_ac

Fig. 7 Comparison of speeds of different algorithms when the shortest pattern string length is 14
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Fig. 8 Comparison of speeds of different algorithms when the shortest pattern string length is 16

affected by the length of the shortest pattern strings and the number of pattern strings due to the
trie data structure, showing a relatively stable matching performance. The matching speed of
our XWM-Hash algorithm is slightly slower than XWM-Tree algorithm.

Since the unit of double-array AC and TFD is too large to identify the proposed method and
the result of SOGPOT, we show the results of XWM-Tree, XWM-Hash, and SOGPOT only in
Figs. 9, 10, 11, 12, 13 and 14. The speed and memory of the double-array AC and TFD
algorithms in different shortest pattern string length (SPSL) are shown in Table 3, respectively.

1 2 3 4 5 6 7 8

9 10

1800
1600
1400
1200
1000
80
60
40
20

Memory (MB)
o O O O

o

Rule number (Million)
B xwm-tree B sogopt M xwm-hash

Fig. 9 Comparison of memory of different algorithms when the shortest pattern string length is 6
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50

o

B xwm-tree M sogopt M xwm-hash

Fig. 10 Comparison of memory of different algorithms when the shortest pattern string length is 8

The experimental results show that XWM-Tree and XWM-Hash algorithm used less
memory thanks to the two compressed hash tables. When the number of pattern strings was
between 1 million and 7 million, our algorithm used slightly more memory than SOGOPT.
However, when the number of pattern strings reached 10 million, both XWM and SOGOPT
used considerable memory, and both used significantly less than the TFD and double-array AC
algorithms. Since the XWM-Hash algorithm used a hash table to organize the conflict pattern
string, the memory consumption was greater than the XWM-Tree algorithm. Even so, XWM-

1 2 3 45 6 7 8 910

Rule number (Million)

1800
1600
1400
1200
1000
80
60
40
20

Memory (MB)
o O O o

o

B xwm-tree B sogopt M xwm-hash
Fig. 11 Comparison of memory of different algorithms when the shortest pattern string length is 10
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o

o O

20

o

B xwm-tree M sogopt M xwm-hash
Fig. 12 Comparison of memory of different algorithms when the shortest pattern string length is 12

Hash consumed less than 2 GB of memory when handling 10 million pattern strings, which
was much lower than the nearly 8 GB used by double-array AC and TFD.

It can be seen in Figs. 3,4, 5,6,7,8,9, 10, 11, 12, 13 and 14 that the matching performance of the
XWM-Tree algorithm is higher than the XWM-Hash algorithm and the memory usage of XWM-
Tree algorithm is lower than the XWM-Hash algorithm. This is because, in the XWM-Hash
algorithm, some pattern strings are often hashed to the same bucket, which may result in the need
to compare the pattern strings one by one when matching. Comparatively, in the XWM-Tree
algorithm, after processing the pattern string based on the window selection technique, there are very
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few matching windows with exactly the same prefix, so the matching performance of the XWM-
Tree algorithm is higher than the XWM-Hash algorithm. While in memory usage, the XWM-Tree
algorithm consumes less memory than XWM-Hash because the tree-based organization structure in
the associative container is more compact and less wasteful than the hash-based organization.

5 Conclusion

In this paper, we proposed XWM algorithm to match large numbers of URL rules. It reduces
hash collisions and the number of precise comparisons by adapting to the specific character-
istics of URLs. Experimental results with real data show that the matching speed of XWM is
doubled faster than traditional algorithms, which makes it more suitable and preferable for

Table 3 Memory usage (MB) of both TDF and AC algorithms

SPSL  algrithm Rule number(million)

1 2 3 4 5 6 7 8 9 10
6 tfd 565.7 11725 19439 28054 36989 4591.8 54563 6281.8 7054.3 7645.7
da_ac 784.0 1544.8 2296.5 3041.8 37823 45193 5252.1 59833 6712.1 73977
8 tfd 5712 1173.8 19369 27843 3665.9 4545.6 5399.2 62147 69829 7695.1
da_ac 790.8 15583 2316.6 3068.2 3815.2 45584 52973 60348 6769.9 75023
10 tfd 566.7 11745 19472 28103 3705.3 4599.7 54657 6292.6 70664 7658.8
da_ac 7947 15659 23279 3083.4 3834.0 4581.2 53240 60652 6804.0 7499.0
12 tfd 565.0 1178.8 1965.8 2845.6 3763.3 46745 5558.8 63953 7178.3 7885.8
da_ac 812.1 16004 2378.8 3151.1 3918.7 46819 5441.5 61993 6954.1 77703
14 tfd 567.6 1175.7 1950.0 28134 3711.5 4606.6 5474.6 63009 71759 7946.6
da_ac 830.3 16369 24334 32234 4008.6 4789.8 55674 6343.0 71152 7938.9
16 tfd 568.8 1178.1 19539 2819.1 3719.0 46159 54857 6313.6 71904 7962.7

da_ac 845.1 1666.2 2477.0 3281.2 4080.4 4875.6 56672 6456.7 7242.7 8081.2
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large-scale application environments. The XWM algorithm’s performance depends on hash
functions to construct shift table and hash table, and organize associative containers. It is
suitable for large-scale rule sets with longer lengths of the shortest pattern string, especially
when the length of shortest pattern string is 10 or more. The future work will include
improving the performance of algorithm to adapt general patterns.
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