Skip to main content
Log in

An improved computer based diagnosis system for early detection of abnormal lesions in the brain tissues with using magnetic resonance and computerized tomography images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Detection of masses can be a challenging task for radiologists and physicians. Manual tumor diagnosis in the brain is sometimes a time consuming process and can be insufficient for fast and accurate detection and interpretation. This study introduces an improved interface-supported early diagnosis system to increase the speed and accuracy for supporting the traditional methods. The first stage in the system involves collecting information from the brain tissue, and assessing whether it is normal or abnormal through the processing of Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT) images. The next stage involves gathering results from the image(s) after the single/multiple and volumetric and multiscale image analysis. The other stage involves Feature Extraction for some cases and making an interpretation about the abnormal Region of Interest (ROI) area via Deep Learning and conventional Artificial Intelligence methods is the last stage. The output of the system is mainly the name of the mass type which was introduced to the network. The results were obtained for totally 300 images for High-Grade Glioma (HGG), Low-Grade Glioma (LGG), Glioblastoma (GBM), Meningioma as well as Ischemic and Hemorrhagic stroke. For the cases, the DICE score was obtained as 0.927 and the normal/abnormal differentiation of the brain tissues was also achieved successfully. Finally, this system can give a chance to the doctors for supporting the results, speeding up the diagnosis process and also decreasing the rate of possible misdiagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

MRI :

Magnetic Resonance Imaging.

CT :

Computerized Tomography.

ROI :

Region Of Interest.

GBM :

Glioblastoma.

HGG :

High Grade Glioma.

LGG :

Low Grade Glioma.

DW-MRI :

Diffusion-Weighted Magnetic Resonance Imaging.

DICOM :

Digital Imaging and Communications in Medicine.

NIfTI :

Neuroimaging Informatics Technology Initiative.

CAD :

Computer Aided Diagnosis.

GUI :

Graphical User Interface.

CNN :

Convolutional Neural Network.

VGG :

Visual Geometry Group.

∇I :

Difference between the Gaussian image and blurred image.

φ(i) :

Surface at iteration of i.

Wa :

Advection weight, and Wc and Fc represent the curvature weight and force.

Fa :

Force value.

Wc :

Curvature weight.

Wc :

Curvature force.

SVM :

Support Vector Machine

References

  1. Bagher-Ebadian H, Jafari-Khouzani K, Mitsias PD, Lu M, Soltanian-Zadeh H, Chopp M, Ewing JR (2011) Predicting final extent of ischemic infarction using artificial neural network analysis of multi-parametric MRI in patients with stroke. PLoS One 6(8):e22626

    Article  Google Scholar 

  2. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nature Scientific Data

  3. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Γ, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SM, Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van Leemput K (2015) The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  4. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat Sci Data 4:170117. https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  5. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C (2017) Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-GBM collection. Cancer Imaging Arch. https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  6. Banerjee S, Mitra S, Shankar BU, Hayashi Y (2016) A Novel GBM Saliency Detection Model Using Multi-Channel MRI. PLoS One 11(1):e0146388

    Article  Google Scholar 

  7. Bauer S, Nolte LP, Reyes M (2011) Fully Automatic Segmentation of Brain Tumor Images Using Support Vector Machine Classification in Combination with Hierarchical Conditional Random Field Regularization. In: Fichtinger G., Martel A., Peters T. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science 6893

  8. Boiten J, Lodder J (1991) Lacunar infarcts: pathogenesis and validity of the clinical syndromes. Stroke 22:1374–1378

    Article  Google Scholar 

  9. Bray F, Sankila R, Ferlay J, Parkin DM (2002) Estimates of cancer incidence and mortality in Europe in 1995. Eur J Cancer 38(1):99–166

    Article  Google Scholar 

  10. Cairncross JG, Macdonald DR (1988) Successful chemother- apy for recurrent malignant oligodendroglioma. Ann Neurol 23:360–364

    Article  Google Scholar 

  11. Chokchaitam FS, Muengtaweepongsa S (2011) Automatic detection of ischemic stroke area from CT perfusion maps Cerebral Blood Volume and Cerebral Blood Flow. Proceedings/International Symposium on Signal Processing and Communications Systems 1–6

  12. De Vries LS, Van der Grond J, Van Haastert IC, Groenendaal F (2005) Prediction of Outcome in New-Born Infants with Arterial Ischaemic Stroke Using Diffusion-Weighted Magnetic Resonance Imaging. Neuropediatrics 36(1):12–20

    Article  Google Scholar 

  13. DeAngelis LM (2001) Brain tumors. N Engl J Med 344(2):114–123

    Article  Google Scholar 

  14. Deng F, Guo S, Zhou R, Chen J (2015) Sensor multifault diagnosis with improved support vector machines. IEEE Trans. Autom. Sci. Eng (99): 1–11

  15. Duta N, Sonka M (1998) Segmentation and interpretation of MR brain images. An improved active shape model. IEEE Trans Med Imaging 17(6):1049–1062

    Article  Google Scholar 

  16. Fiebach JB, Schellinger PD, Gass A et al (2004) Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage. Stroke 35:502–506

    Article  Google Scholar 

  17. Field M, Witham TF, Flickinger JC, Kondziolka D, Lunsford LD (2001) Comprehensive assessment of hemorrhage risks and outcomes after stereotactic brain biopsy. J Neurosurg 94(4):545–551

    Article  Google Scholar 

  18. Gargouri F, INA BH, Chtourou K (2014) Automatic localization methodology dedicated to brain tumors based on ICP matching by using axial MRI symmetry. Proceedings /International Conference on Advanced Technologies for Signal and Image Processing 209–213

  19. González-Vélez V, Flores-Rodríguez T, Flores-Avalos B, González-Vélez H (1997) A statistical brain-mapping system for the evaluation of communication disorders. CBMS IEEE, Maribor 167–172

  20. Gopal NN, Karnan M (2010) Diagnose brain tumor through MRI using image processing clustering algorithms such as Fuzzy C Means along with intelligent optimization techniques. IEEE International Conference on Computational Intelligence and Computing Research, Coimbatore 1–4

  21. Hardell L, Carlberg M, Hansson MK (2006) Pooled analysis of two case-control studies on the use of cellular and cordless telephones and the risk of benign brain tumours diagnosed during 1997-2003. Int J Oncol 28:509–518

    Google Scholar 

  22. Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  Google Scholar 

  23. Hoffman HJ, Becker L, Craven MA (1980) A Clinically and Pathologically Distinct Group of Benign Brain Stem Gliomas. Neurosurgery 7(3):243–248

    Article  Google Scholar 

  24. Ireland D, Bialkowski ME (2011) Microwave Head Imaging for Stroke Detection. Prog Electromagn Res M 21:163–175

    Article  Google Scholar 

  25. Jeena RS, Kumar S (2013) A Comparative Analysis of MRI and CT Brain Images for Stroke Diagnosis”, Proceedings/International Conference on Microelectronics, Communication and Renewable Energy 1–5

  26. Karthik R, Menaka R (2016) A Novel Brain MRI Analysis System for Detection of Stroke Lesions using Discrete Wavelets. J Telecommun, Electron Comput Eng 8:49–53

    Google Scholar 

  27. Kidwell CS, Chalela JA, Saver JL et al (2004) Comparison of MRI and CT for Detection of Acute Intracerebral Hemorrhage. JAMA 292(15):1823–1830

    Article  Google Scholar 

  28. Kistler M, Bonaretti S, Pfahrer M, Niklaus R, BuÈchler P (2013) The Virtual Skeleton Database: An Open Access Repository for Biomedical Research and Collaboration. J Med Internet Res 15(11):e245

    Article  Google Scholar 

  29. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J, Freymann J, Farahani K, Davatzikos C (2017) Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-LGG collection. Cancer Imaging Arch. https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  30. Klöppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, Fox NC, Jack CR, Ashburner J, Frackowiak RS (2008) Automatic classification of MR scans in Alzheimer's disease. Brain 131(3):681–689

    Article  Google Scholar 

  31. Kundu A (1990) Local segmentation of biomedical images. Comput Med Imaging Graph 14:173–183

    Article  Google Scholar 

  32. Lau PY, Ozawa S (2006) A Simple Method for Detecting Tumor in T2-Weighted MRI Brain Images: An Image-Based Analysis. Department of Information and Computer Science, Keio University, Yokohama-shi 223–8522

  33. Lefohn A, Cates J, Whitaker R (2003) Interactive GPU-Based level sets for 3D Brain Tumor Segmentation MICCAI 2003: Medical Image Computing and Computer-Assisted Intervention – MICCAI 564–572

  34. Levin VA, Wilson CV, Crafts D et al (1977) Criteria for evaluating patients undergoing chemotherapy for malignant brain tumor. J Neurosurg 47:329–335

    Article  Google Scholar 

  35. Liebeskind DS, Yang CK, Sayre J, Bakshi R (2003) Neuroimaging of cerebral ischemia in clinical practice. Stroke 34:255

    Article  Google Scholar 

  36. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak J, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  37. Maier O et al (2016) ISLES 2015- A ğublic evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI, Medical Image Analysis. ISSN: 1361–8415

  38. Kistler et al (2013) The virtual skeleton database: an open access repository for biomedical research and collaboration, JMIR

  39. Meyers CA, Weitzner MA, Valentine AD, Levin VA (1998) Methylphenidate therapy improves cognition, mood, and function of brain tumor patients. J Clin Oncol 16(7):2522–2527

    Article  Google Scholar 

  40. Minniti G, Flickinger J, Tolu B, Paolini S (2018) Management of nonfunctioning pituitary tumors: radiotherapy. Pituitary 21(2):154–161

    Article  Google Scholar 

  41. Mitra S, Banerjee S, Hayashi Y (2017) Volumetric brain tumour detection from MRI using visual saliency. PLoS One 12(11):e0187209

    Article  Google Scholar 

  42. Nagalkar V, Agrawal S (2012) Ischemic Stroke Detectıon Using Digital Image Processing By Fuzzy Methods. Int J Res Sci Technol 1(4):345–347

    Google Scholar 

  43. Nagalkar et al (2012) Ischemic Stroke Detection Using DIP by Fuzzy Methods. Int J Res Sci Tecnol 1(4):345–347

    Google Scholar 

  44. Packard AS, Kase CS, Aly AS, Barest GD (2003) Computed tomography-negative intracerebral hemorrhage. Arch Neurol 60:1156–1159

    Article  Google Scholar 

  45. Patel MR, Edelman RR, Warach S (1996) Detection of hyperacute primary intraparenchymal hemorrhage by magnetic resonance imaging. Stroke 27:2321–2324

    Article  Google Scholar 

  46. Raya SP (1990) Low-level segmentation of 3-D magnetic resonance brain images: A rule-based system. IEEE Trans Med Image 9:327–337

    Article  Google Scholar 

  47. Reddy GR et al (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12:6677–6686

    Article  Google Scholar 

  48. Ural B (2017) A Computer-Based Brain Tumor Detection Approach with Advanced Image Processing and Probabilistic Neural Network Methods. J. Med. Biol. Eng 1–13

  49. Wells WM, Grimson EL, Kikinis R, Jolesz FA (1996) Adaptive segmentation of MRI data. IEEE Trans Med Imaging 15:429–442

    Article  Google Scholar 

  50. Zeltzer PM, Friedman HS, Norris DG et al (1985) Criteria and definition of response and relapse in children with brain tumor. Cancer 56:1824–1826

    Article  Google Scholar 

  51. Zhang Y et al (2011) A hybrid method for MRI brain image classification. Expert Syst Appl 38(8):10049–10053

    Article  Google Scholar 

  52. Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224

    Article  Google Scholar 

  53. Zhang S, Song G, Zang Y, Jia J, Wang C, Li C, Tian J, Dong D, Zhang Y (2018) Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. Eur Radiol 28(9):3692–3701

    Article  Google Scholar 

Download references

Acknowledgments

In addition, Mehmet KOCABAY (BSc Student from Gazi University Electrical Electronics Engineering) took important missions in the software testing phases of the study in detail. We thank him for the achievement in this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Berkan URAL. Design of study: Berkan URAL. Analyzing data: Pınar AKDEMİR ÖZIŞIK, Berkan URAL. Methodology: Berkan URAL. (Main) Software: Berkan URAL. Validation & Test: Berkan URAL. Software development: Berkan URAL. Writing – original draft: Berkan URAL. Writing – review & editing: Berkan URAL, Pınar AKDEMİR ÖZIŞIK, Fırat HARDALAÇ.

Corresponding author

Correspondence to Berkan Ural.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Ethical Approval

This study is mainly classified as a retrospective study. All procedures performed in the study involving radiological images of human subjects and were in accordance with the ethical standards of the institutional and/or national research comittee and with the latest Helsinki declaration.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ural, B., Özışık, P. & Hardalaç, F. An improved computer based diagnosis system for early detection of abnormal lesions in the brain tissues with using magnetic resonance and computerized tomography images. Multimed Tools Appl 79, 15613–15634 (2020). https://doi.org/10.1007/s11042-019-07823-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07823-7

Keywords

Navigation