Skip to main content

Advertisement

Log in

Efficient representation of size functions based on moments theory

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Nowadays, there is a need to develop efficient and intuitive solutions such as hand gestures recognition for the Human-machine interaction. This paper presents a hand gestures recognition system based on salient geometric features extracted using size functions theory. We propose a new representation of the reduced size function based on Tchebichef moments providing more details and information for their graphs descriptions compared to existing representations. In addition, a methodical algorithm of fast Tchebichef moments computation for grey scale images is well adapted to the encoded graph of size function. Furthermore, a contour discretization based on a convexity approach is proposed for an optimal computation of the measuring functions, and new measuring functions for hand gestures classification and retrieval are proposed. The comparison with existing systems indicates that our method competes with the best ranked method for the dynamic case and surpasses the state of the art in static case; in addition it presents the advantage to be applied in both static and dynamic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Baraldi L, Paci F, Serra G, Benini L, Cucchiara R (2014) Gesture recognition in ego-centric videos using dense trajectories and hand segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. IEEE, pp. 702–707

  2. Barros P, Maciel-Junior NT, Fernandes BJT, Bezerra BLD (2017) A dynamic gesture recognition and prediction system using the convexity approach. Comput Vis Image Underst 155:139–149

    Article  Google Scholar 

  3. Biasoti S, Cerri A, Frosini P, Giorgi D (2011) A new-algorithm for computing the 2-dimentional matching distance between size functions. Pattern Recogn Lett 32(14):1735–1746

    Article  Google Scholar 

  4. Bourennane S, Fossati C (2012) Comparison of shape descriptors for hand posture recognition in video. SIViP 6:147–157

    Article  Google Scholar 

  5. Chan L, Liang R-H, Tsai M-C, Cheng K-Y, Su C-H, Chen MY, Cheng W-H, Chen B-Y (2013) Finger Pad private and subtle interaction using fingertips. In: Symposium on User Interface Software and Technology, ACM, pp. 255–260

  6. Cheng J, Chen X, Liu A, Peng H (2015) A novel phonology-and radical-coded chinese sign language recognition framework using accelerometer and surface electromyography sensors. Sensors 15(9):23303–23324

    Article  Google Scholar 

  7. d’Amico M, Frosini P, Landi C (2006) Using matching distance in Size Theory: A survey. Int J Imaging Syst Technol 16(5):154–161

    Article  Google Scholar 

  8. Dibos F, Frosini P, Pasquignon D (2004) The use of size functions for comparison of shapes through differential invariants. J Math Imaging Vis 21(2):107–118

    Article  MathSciNet  Google Scholar 

  9. Dominio F, Donadeo M, Zanuttigh P (2014) Combining multiple depth-based descriptors for hand gesture recognition. Pattern Recogn Lett 50(C):101–111

    Article  Google Scholar 

  10. Douglas DH, Peucker TK (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2):112–122

    Article  Google Scholar 

  11. Edelsbrunner H, Harer J (2008) Persistent homology—a survey. In: Surveys on discrete and computational geometry, vol. 453 of Contemp. Math. Amer. Math.Soc., Providence, pp. 257–282

  12. Erol A, Bebis G, Nicolescu M, Boyle RD, Twombly X (2007) Vision-Based Hand Pose Estimation : A review. Comput Vis Image Underst 108(1–2):52–73

    Article  Google Scholar 

  13. Flasinski M, Myslinski S (2010) On the use of graph parsing for recognition of isolated hand postures of polish sign language. Pattern Recogn 43(6):2249–2264

    Article  Google Scholar 

  14. Flusser J, Zitova B, Suk T (2009) Moments and moment invariants in pattern recognition. John Wiley & Sons, Ltd, Hoboken

    Book  MATH  Google Scholar 

  15. Frosini P (1992) Discrete computation of size functions. J Combin Inform System Sci 17(3–4):232–250

    MathSciNet  MATH  Google Scholar 

  16. Frosini P, Landi C (2001) Size functions and formal series. AAECC 12(4):327–349

    Article  MathSciNet  MATH  Google Scholar 

  17. Haralick R, Shanmugan K, Dinstein I (1973) Textural features for image classification. IEEE Transactions On Systems, Man, and Cybernetics SMC 3:610–621

    Article  Google Scholar 

  18. Harandi MT, Sanderson C, Sanin A, Lovell BC (2013) Spatio-temporal covariance descriptors for action and gesture recognition. In: Proceedings of the 2013 IEEE Workshop on Applications of Computer Vision (WACV). IEEE Computer Society, Washington, DC, pp. 103–110

  19. Hsieh CY, Lin WY (2017) Video-based human action and hand gesture recognition by fusing factored matrices of dual tensors. Multimed Tools Appl 76(6):7575–7594

    Article  Google Scholar 

  20. Ilea DE, Whelan PF (2011) Image segmentation based on the integration of colour-texture descriptors- A review. Pattern Recogn 44(10–11):2479–2501

    Article  MATH  Google Scholar 

  21. Jones JP, Palmer LA (1987) An evaluation of the two dimensional Gabor filter model of simple receptive fields in cat striate cortex. J Neurophysiol 58(6):1233–1258

    Article  Google Scholar 

  22. Ju Z, Gao D, Cao J, Liu H (2016) A novel approach to extract hand gesture feature in depth images. Multimed Tools Appl 75(19):11929–11943

    Article  Google Scholar 

  23. Just A, Rodriguez Y, Marcel S (2006) Hand posture classification and recognition using the modified census transform. In: 7th Internat. Conf. on Automatic Face and Gesture Recognition, FGR, pp. 351–356. doi: https://doi.org/10.1109/FGR.2006.62

  24. Kakumanu P, Makrogiannis S, Bourbakis N (2007) A survey of skin-color modeling and detection methods. Pattern Recogn 40:1106–1122

    Article  MATH  Google Scholar 

  25. Kane L, Khanna P (2015) A framework for live and cross platform fingerspelling recognition using modified shape matrix variants on depth silhouettes. Comput Vis Image Underst 141:138–151

    Article  Google Scholar 

  26. Kelly D, McDonald J, Markham C (2010) A person independent system for recognition of hand postures used in sign language. Pattern Recogn Lett 31(11):1359–1368

    Article  Google Scholar 

  27. Kim T-K, Cipolla R (2009) Canonical correlation analysis of video volume tensors for action categorization and detection. IEEE Trans Pattern Anal Mach Intell 31(8):1415–1428

    Article  Google Scholar 

  28. Kim T-K, Wong S-F, Cipolla R (2007) Tensor canonical correlation analysis for action classification. IEEE Conference on Computer Vision and Pattern Recognition:1–8

  29. Kobayashi T, Otsu N (2009) A three-way auto-correlation based approach to motion recognition. Pattern Recogn Lett 30(3):185–192

    Article  Google Scholar 

  30. Kobayashi T, Otsu N (2012) Motion recognition using local auto-correlation of space–time gradients. Pattern Recogn Lett 33:1188–1195

    Article  Google Scholar 

  31. Li C, Xie C, Zhang B, Chen C, Han J (2018) Deep Fisher discriminant learning for mobile hand gesture recognition. Pattern Recogn 77:276–288

    Article  Google Scholar 

  32. Lin H-T, Lin C-J, Weng RC (2007) A note on Platt’s probabilistic outputs for support vector machines. Mach Learn 68(3):267–276 ISSN 0885-6125

    Article  Google Scholar 

  33. Liu S, Xiao Q (2015) A signer-independent sign language recognition system based on the weighted KNN/KMM. In: Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2015 7th International Conference on, vol. 2, pp. 186–189

  34. Lui YM, Beveridge JR (2011) Tangent bundle for human action recognition. In proc. of Automatic Face & Gesture Recognition and Workshops, pp. 97–102

  35. Lui YM, Beveridge JR, Kirby M (2010) Action classification on product manifolds. In Proc. of CVPR, pp. 833–839

  36. Mhamedi MAA, Ziou D (2014) A local approach for 3D object recognition through a set of size functions. Image Vis Comput 32(12):1030–1044

    Article  Google Scholar 

  37. Mukundan R (2004) Some computational aspects of discrete orthonormal moments. IEEE Trans Image Process 13(8):1055–1059

    Article  MathSciNet  Google Scholar 

  38. Niebles J, Wang H, Fei-Fei L (2006) Unsupervised learning of human action categories using spatial-temporal words. In: British Machine Vision Conference, pp 1249–1258

    Google Scholar 

  39. Papakostas GA, Karakasis EG, Koulourisotis DE (2008) Efficient and accurate computation of geometric moments on grey-scale images. Pattern Recogn 41(6):1895–1904

    Article  MATH  Google Scholar 

  40. Shu H, Zhang H, Beijing C, Haigron P, Luo L (2010) Fast computation of Tchebichef moments for binary and greyscale images. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers 19(12):3171–3180

    MATH  Google Scholar 

  41. Su Y, Wang H, Jing P, Xu C (2017) (2017) A spatial-temporal iterative tensor decomposition technique for action and gesture recognition. Multimed Tools Appl 76:10635–10652

    Article  Google Scholar 

  42. Triesch J, Von der malsuburg C (2002) Classification of Hand postures Against Complex Backgrounds Using Elastic Graph Matching. Image Vis Comput 20(13–14):937–943

    Article  Google Scholar 

  43. Verri A, Uras C (1996) Metric-topological approach to shape representation and recognition. Image Vis Comput 14:189–207

    Article  Google Scholar 

  44. Verri A, Uras C, Frosini P, Ferri M (1993) On the use of size functions for shape analysis. Biol Cybern 70:99–107

    Article  MATH  Google Scholar 

  45. Wang C, Liu Z, Zhu M, Zhao J, Chan S-C (2017) A hand gesture recognition system based on canonical superpixel-graph. Signal Process Image Commun 58:87–98

    Article  Google Scholar 

  46. Wang JW, Wang CC, Lee JS (2013) Genetic Eigen Hand Selection for hand shape classification based on compact hand extraction. Eng Appl Artif Intell 26:2215–2226

    Article  Google Scholar 

  47. Yang C, Han D-K, Ko H (2017) Continuous hand gesture recognition based on trajectory shape information. Pattern Recogn Lett 99:39–47

    Article  Google Scholar 

  48. Yang H-D, Sclaroff S, Lee S-W (2009) Sign language spotting with a threshold model based on conditional random field. IEEE Trans Pattern Anal Match Intell 31(7):1264–1277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamila Dahmani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahmani, D., Larabi, S. & Cheref, M. Efficient representation of size functions based on moments theory. Multimed Tools Appl 78, 27957–27982 (2019). https://doi.org/10.1007/s11042-019-07859-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-07859-9

Keywords

Navigation