Skip to main content
Log in

Robust object tracking based on ridge regression and multi-scale local sparse coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, the technology of visual object tracking has achieved great success. However, it is still extraordinary challenging for some factors, such as scale variations, partial occlusions and so on. To deal with the problem of scale variations of the target, this paper proposes a hybrid tracking algorithm based on ridge regression and multi-scale local sparse coding. The hybrid tracking algorithm contains three parts. Firstly, a discriminative model based on two ridge regression models which include a correlation filtering ridge regression model and a color statistics ridge regression model, is used to estimate the approximate position of the target. Secondly, a multi-scale local sparse coding with particle filtering model, which combines local overlapped patches and local non-overlapped patches, is used to estimate the precise position and scale variations of the target. Thirdly, the appearance model of the target in the discriminative model based on ridge regression is updated according to the precise position and scale variations of the target in the second part. At the end, extensive experiments verify the effectiveness of the hybrid tracking algorithm in dealing with scale variations of the target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr P (2015) Staple: complementary learners for real-time tracking 38(2):1401

  2. Bolme D S, Beveridge J R, Draper B A, Lui YM (2010) Visual object tracking using adaptive correlation filters. In: Computer vision and pattern recognition, pp 2544–2550

  3. Danelljan M, Häger G., Khan F S, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: British machine vision conference, pp 65.1–65, vol 11

  4. Danelljan M, Khan F S, Felsberg M, Weijer JVD (2014) Adaptive color attributes for real-time visual tracking. In: IEEE conference on computer vision and rattern recognition, pp 1090–1097

  5. Danelljan M, Bhat G, Khan F S, Felsberg M (2016) Eco: efficient convolution operators for tracking pp 6931–6939

  6. Danelljan M, Gustav H, Khan F, Felsberg M. (2016) Learning spatially regularized correlation filters for visual tracking, pp 4310–4318

  7. Danelljan M, Hager G, Khan F S, Felsberg M (2017) Discriminative scale space tracking. IEEE Trans Pattern Anal Mach Intell 39(8):1561

    Article  Google Scholar 

  8. Hare S, Saffari A, Torr PHS (2011) In: International conference on computer vision, pp 263–270

  9. Henriques J F, Rui C, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. Springer, Berlin, pp 702–715

    Google Scholar 

  10. Henriques J F, Rui C, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filter. IEEE Trans Pattern Anal Mach Intell 37(3):583

    Article  Google Scholar 

  11. Hong Z, Chen Z, Wang C, Mei X, Prokhorov D, Tao D (2015) Multi-store tracker (muster): A cognitive psychology inspired approach to object tracking. In: IEEE conference on computer vision and pattern Recognition, pp 749–758

  12. Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model. In: IEEE conference on computer vision and pattern recognition, pp 1822–1829

  13. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409

    Article  Google Scholar 

  14. Kristan M, Pugfelder R, Leonardis A, Matas J, Porikli F, Cehovin L, Nebehay G, Fernandez G, Vojir T, Gatt A. (2014) In: IEEE international conference on computer vision workshops

  15. Li Y, Zhu J (2014) A scale adaptive kernel correlation filter tracker with feature integration 8926, 254

  16. Liang P, Blasch E, Ling H (2015) Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans Image Process 24(12):5630

    Article  MathSciNet  Google Scholar 

  17. Liu B, Huang J, Yang L, Kulikowsk C (2011) Robust tracking using local sparse appearance model and k-selection. IEEE conference on computer vision and pattern recognition, pp 1313–1320

  18. Liu T, Wang G, Yang Q (2015) Real-time part-based visual tracking via adaptive correlation filter. In: IEEE conference on computer vision and pattern recognition, pp 4902–4912

  19. Lu W, Yang M-H (2013) Online object tracking with sparse prototypes. IEEE Trans Image Process 22(1):314

    Article  MathSciNet  Google Scholar 

  20. Lukezic A, Vojir T, Zajc L C, Matas J, Kristan M (2017) Discriminative correlation filter with channel and spatial reliability In: IEEE conference on computer vision and pattern recognition, pp 4847–4856

  21. Ma B, Shen J, Liu Y, Hu H, Shao L, Li X (2015) Visual tracking using strong classifier and structural local sparse descriptors. IEEE Trans Multimed 17 (10):1818

    Article  Google Scholar 

  22. Ma C, Yang X, Zhang C, Yang MH (2015) Long-term correlation tracking. In: Computer vision and pattern recognition, pp 5388–5396

  23. Mairal J, Bach F, Ponce J, Sapiro G (2009) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11(1):19

    MathSciNet  MATH  Google Scholar 

  24. Mei X, Ling H (2009) Robust visual tracking using L1 minimization. In: IEEE international conference on computer vision, pp 1436–1443

  25. Mei X, Ling H, Wu Y, Blasch E, Bai L (2011) Minimum error bounded efficient /ell1 tracker with occlusion detection. In: Computer vision and pattern recognition, pp 1257–1264

  26. Mueller M, Smith N, Ghanem B (2016) A benchmark and simulator for uav tracking. Springer International Publishing, pp 445–461

  27. Mueller M, Smith N, Ghanem B (2017) Context-aware correlation filter tracking. In: IEEE conference on computer vision and pattern recognition, pp 1387–1395

  28. Nam H, Han B (2016) Learning multi-domain convolutional neural networks for visual tracking. In: IEEE conference on computer vision and pattern recognition, pp 4293–4302

  29. Ning J, Yang J, Jiang S, Lei Z, Yang MH (2016) Object tracking via dual linear structured svm and explicit feature map. In: Computer vision and pattern recognition

  30. Ross D A, Lim J, Lin R S, Yang M H (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1-3):125

    Article  Google Scholar 

  31. Triggs ND (2005) Histograms of oriented gradients for human detection. In: Computer vision and pattern recognition

  32. Vojir T, Noskova J, Matas J (2014) Robust scale-adaptive mean-shift for tracking. Pattern Recogn Lett 49(3):250

    Article  Google Scholar 

  33. Wang D, Lu H (2014) Visual tracking via probability continuous outlier model. In: Computer vision and pattern recognition, pp 3478–3485

  34. Wang D, Yang G, Lu H (2012) Tri-tracking: combining three independent views for robust visual tracking. Int J Image Graph 12(03):63

    Article  MathSciNet  Google Scholar 

  35. Wang M, Liu Y, Huang Z (2017) Large margin object tracking with circulant feature maps, pp 4800–4808

  36. Wang C, Zhang L, Xie L, Yuan J (2018) Kernel cross-correlator

  37. Wu Y, Lim J, Yang M H (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834

    Article  Google Scholar 

  38. Xiao Z, Lu H, Wang D (2012) Object tracking with l2-rls. In: International conference on pattern recognition, pp 1351–1354

  39. Xie C, Tan J, Chen P, Zhang J, He L (2014) Multi-scale patch-based sparse appearance model for robust object tracking. Mach Vis Appl 25(7):1859

    Article  Google Scholar 

  40. Yong H, Meng D, Zuo W, Zhang L (2017) Robust online matrix factorization for dynamic background subtraction. IEEE Trans Pattern Anal Mach Intell PP(99):1

    Google Scholar 

  41. Zarezade A, Rabiee H R, Soltani-Farani A, Khajenezhad A (2014) Patchwise joint sparse tracking with occlusion detection. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 23(10):4496

    Article  MathSciNet  Google Scholar 

  42. Zhang J, Ma S, Sclaroff S (2014) Meem: robust tracking via multiple experts using entropy minimization. In: European conference on computer vision, pp 188–203

    Chapter  Google Scholar 

  43. Zhang T, Xu C, Yang MH (2017) Multi-task correlation particle filter for robust object tracking. In: IEEE conference on computer vision and pattern recognition, pp 4819–4827

  44. Zhao Z, Feng P, Wang T, Liu F, Yuan C, Guo J, Zhao Z (2016) Dual-scale structural local sparse appearance model for robust object tracking. Neurocomputing 237

  45. Zhao Z, Feng P, Guo J, Yuan C, Wang T, Liu F, Zhao Z, Cui Z, Wu B (2018) A hybrid tracking framework based on kernel correlation filtering and particle filtering. Neurocomputing

  46. Zhong W (2012) Robust object tracking via sparsity-based collaborative model. In: Computer vision and pattern recognition, pp 1838–1845

  47. Zhong W, Lu H, Yang M H (2014) Robust object tracking via sparse collaborative appearance model. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 23(5):2356

    Article  MathSciNet  Google Scholar 

  48. Zuo W, Wu X, Liang L, Lei Z, Yang MH (2018) Learning support correlation filters for visual tracking. IEEE Trans Pattern Anal Mach Intell PP(99):1

    Google Scholar 

Download references

Acknowledgments

Thank the editor and the anonymous referees for their valuable comments. This research was supported by the Science and Technology Research Project of Jiangxi Education Department (No. GJJ180904), the National Natural Science Foundation of China (No. 61762055, 61962029 and 61572214), the Jiangxi Provincial Natural Science Foundation of China (No. 20181BAB202014) and the Humanities and Social Sciences Foundation of Colleges and Universities in Jiangxi Province (No. TQ18111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Xiong, L., Mei, Z. et al. Robust object tracking based on ridge regression and multi-scale local sparse coding. Multimed Tools Appl 79, 785–804 (2020). https://doi.org/10.1007/s11042-019-08139-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08139-2

Keywords

Navigation