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Abstract The large amount of videos popping up every day, make it more and more
critical that key information within videos can be extracted and understood in a very
short time. Video summarization, the task of finding the smallest subset of frames,
which still conveys the whole story of a given video, is thus of great significance to
improve efficiency of video understanding. We propose a novel Dilated Temporal Re-
lational Generative Adversarial Network (DTR-GAN) to achieve frame-level video
summarization. Given a video, it selects the set of key frames, which contain the
most meaningful and compact information. Specifically, DTR-GAN learns a dilated
temporal relational generator and a discriminator with three-player loss in an adver-
sarial manner. A new dilated temporal relation (DTR) unit is introduced to enhance
temporal representation capturing. The generator uses this unit to effectively exploit
global multi-scale temporal context to select key frames and to complement the com-
monly used Bi-LSTM. To ensure that summaries capture enough key video represen-
tation from a global perspective rather than a trivial randomly shorten sequence, we
present a discriminator that learns to enforce both the information completeness and
compactness of summaries via a three-player loss. The loss includes the generated
summary loss, the random summary loss, and the real summary (ground-truth) loss,
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which play important roles for better regularizing the learned model to obtain useful
summaries. Comprehensive experiments on three public datasets show the effective-
ness of the proposed approach.

Keywords Video summarization · Dilated temporal relation · Generative adversarial
network · Three-player loss.

1 Introduction

Driven by the large number of videos that are being produced every day, video sum-
marization (Zhao and Xing, 2014; Sharghi et al., 2016; Meng et al., 2016) plays an
important role in extracting and analyzing key contents within videos. Video summa-
rization techniques have recently gained increasing attention in an effort to facilitate
large-scale video distilling (Potapov et al., 2014; Zhang et al., 2016b; Mahasseni
et al., 2017; Plummer et al., 2017) due to its promising significance. They aim to
generate summaries by selecting a small set of key frames/shots in the video while
still conveying the whole story, and thus can improve efficiency of key information
extraction and understanding.

Essentially, video summarization techniques need to address two key challenges
in order to provide effective summarization results: 1) how to exploit a good key-
frame/key-shot selection policy that can take into account the long-range temporal
correlations embedded in the whole video to determine the uniqueness and impor-
tance of each frame/shot; 2) from a global perspective, how to ensure that the result-
ing short summary can capture all key contents of the video with a minimal number
of frames/shots, that is, how to ensure video information completeness and compact-
ness.

Previous works have made some attempts toward solving these challenges. For
instance, video summarization methods have to a large extent made use of Long
Short-Term Memory (LSTM) (Zhang et al., 2016b; Mahasseni et al., 2017)(Chen
et al., 2017b, 2018) and determinantal point process (DPP) (Gong et al., 2014; Xu
et al., 2015; Sharghi et al., 2016) in order to address the first challenge and learn
temporal dependencies. However, due to the fact that memories in LSTMs and DPPs
are limited, we believe that there is still room to better exploit long-term temporal
relations in the videos.

The second challenge is often addressed by utilizing feature-based approaches,
i.e. instance motion features learning (Zhao and Xing, 2014; Kim et al., 2014; Gygli
et al., 2015), to encourage diversity between the frames included in the summary.
However, this cannot ensure the information completeness and compactness of sum-
maries, leading to redundant frames and less informative results.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have been
widely used in many computer vision tasks due to its effectiveness. Instead of only
relying on the more traditional neural network approach that is only trained by Mean
Squared Error (MSE) between the prediction and the ground-truth, the usage of
GANs adds additional regularization. During training, the discriminator is encour-
aged to learn a complex loss function that encodes the higher order statistics of what
a summary consists of, which in practice cannot be explicitly formulated by hand.
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Fig. 1: The proposed DTR-GAN aims to extract key frames which depict the original video in a complete
and compact way. The DTR units are introduced to complement the commonly used Bi-LSTM, in order
to better capture long-range temporal dependencies. The adversarial network with the supervised loss
for the generator and the three-player discriminator loss, acts as a form of regularization to obtain better
summarization results.

A recent work (Mahasseni et al., 2017) utilizing adversarial neural networks reduces
redundancy by minimizing the distance between training videos and the distribution
of summaries, but it encodes all different information into one fixed-length represen-
tation, which reduces the model learning capabilities given different length of video
sequences.

To better address the above two core challenges in the video summarization task,
namely modeling of long-range temporal dependencies and information complete-
ness and compactness, we propose a novel dilated temporal relational generative ad-
versarial network (DTR-GAN). Figure 1 shows an overview of the proposed method.
The generator, which consists of Dilated Temporal Relational (DTR) units and a Bidi-
rectional LSTM (Bi-LSTM) (Graves and Schmidhuber, 2005), takes the real sum-
mary and the video representation as the input. DTR units aim to exploit long-range
temporal dependencies complementing the commonly used LSTMs. The discrimina-
tor takes three pairs of input: generated summary pair, real summary pair and random
summary pair and optimizes a three-player loss during training. To better ensure the
completeness and compactness, we further introduce a supervised generator loss dur-
ing adversarial training as a form of regularization.

Specifically, DTR units integrate context among frames at multi-scale time spans,
in order to enlarge the model’s temporal field-of-view and thereby effectively model
temporal relations among frames. We use three layers of DTR units, each model-
ing four different time spans, to capture short-term, mid-term and long-term depen-
dencies. Bi-LSTM can function on every time step and benefit both long and short
time dependencies by addressing the gradient problem commonly found in traditional
non-gated Recurrent Neural Networks (RNNs) (Graves et al., 2013). Since our DTR
units act on some certain time scales for efficiently capturing long and short temporal
dependencies, Bi-LSTM can help with temporal modeling in parallel. In this way,
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combining DTR units with the LSTMs ensures that the generator can have better
generating ability.

The discriminator takes three pairs of input: (generated summary, video sequences),
(real summary, video sequences) and (random summary, video sequences), and op-
timizes a three-player loss during training. It is cast to discriminate real summary
from the generated summary, which further enhances the ability of the generator. At
the same time, it ensures that the video representations are not learned from a trivial
randomly shorten sequence. We further introduce a supervised generator loss during
adversarial training to better ensure the completeness and compactness.

Our approach essentially achieves better model capability with DTR units by ex-
ploiting the global multi-scale temporal context. Further, the three-player loss-based
adversarial network also provides more effective regularization to improve the dis-
criminator’s ability to recognize real summaries from fake ones. This, in turn, leads
to better generated summaries. Evaluation results on three public benchmark datasets
SumMe (Gygli et al., 2014), TVSum (Song et al., 2015) and YouTube (De Avila et al.,
2011) demonstrate the effectiveness of our proposed method.

In summary, this paper makes the following contributions:

– DTR-GAN. We propose a novel dilated temporal relational generative adver-
sarial network for generic video summarization, which can generate a compact
subset of frames with good information completeness and compactness. The ex-
periments on three public datasets SumMe, TVSum and YouTube demonstrate the
effectiveness of the proposed approach.

– DTR units. We develop a new temporal modeling module, Dilated Temporal Re-
lational (DTR) unit to depict global multi-scale temporal context and complement
the commonly used Bi-LSTM. DTR units dynamically capture different levels
of temporal relations with respect to different hole sizes, which can enlarge the
model’s field-of-view to better capture the long-range temporal dependencies.

– Adversarial network with three-player loss. We design a new adversarial net-
work with a three-player loss for generic video summarization, which adds reg-
ularization to improve the model abilities during adversarial training. Different
from the traditional two-player loss, we introduce a generated summary loss, a
random summary loss and the real summary (ground-truth) loss, to better learn
summaries as well as avoid trivial summary results.

A preliminary version of this method appeared in (Zhang et al., 2019). Here we
extend our work by: 1) placing our work into a broader context and providing a thor-
ough literature background discussion, 2) providing a more thorough description of
the methodology 3) extending the experimental evaluation to two additional datasets,
namely the SumMe and YouTube datasets; and 4) including a thorough experimental
analysis in form of ablation and visualization studies.

The rest of the paper is organized as follows. In Section 2, we review the related
work. We present our proposed approach for video summarization in Section 3 and
report and analyze the experimental results in Section 4. Finally, Section 5 draws
conclusions and points to future research directions.
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2 Related Work

2.1 Video Summarization

Recent video summarization works apply both deep learning frameworks and other
traditional technique to achieve key frame/shot-level summarization, leading to a sig-
nificant improvement on this task. For example, Gygli et al. (2015) formulated it
as a subset selection problem and used submodular maximization to learn a linear
combination of adapted submodular functions. In (Xu et al., 2015), egocentric video
summarization was achieved by using gaze tracking information (such as fixation and
saccade). They also used submodular function maximization to ensure relevant and
diverse summaries. Zhao and Xing (2014) proposed onLIne VidEo highLIGHTing
(LiveLight), which can generate a short video clip in an online manner via dictionary
learning, thus it enables to start processing arbitrarily long videos without seeing the
entire video. Besides, Zhang et al. (2016c) also adopted dictionary learning using the
methodology of sparse coding with generalized sparse group lasso to ensure retaining
most informative features and relationships. They focused on individual local motion
regions and their interactions between each other.

More recently, works using deep learning frameworks have been proposed and
have achieved great progress. Zhou et al. (2018) used a deep summarization network
via reinforcement learning to achieve both supervised and unsupervised video sum-
marization. They designed a novel reward function that jointly takes diversity and
representativeness of generated summaries into account. Ji et al. (2017) formulated
the video summarization as a sequence-to-sequence learning problem and introduced
an attentive encoder-decoder network (AVS) to obtain key video shots. They used
LSTMs for both encoder and decoder for exploring contextual information. Zhang
et al. (2016b) also used LSTM networks. They proposed a supervised learning tech-
nique by using LSTM to automatically select both keyframes and key subshots, which
is complemented with DPPs for modeling inter-frame repulsiveness to encourage di-
versity of generated summaries. There are some other works on DPP. Gong et al.
(2014) proposed sequential determinantal point process (seqDPP), which heeds the
inherent sequential structures in video data and retains the power of modeling di-
verse subsets, so that good summaries possessing multiple properties can be cre-
ated. In (Zhang et al., 2016a), keyframe-based video summarization was performed
by nonparametrically transferring structures from human-created summaries to un-
seen videos. They used DPP for extracting globally optimal subsets of frames to
generate summaries. In (Yao et al., 2016), a pairwise deep ranking model was em-
ployed to learn the relationship between highlight and non-highlight video segments,
to discover highlights in videos. They designed the model with spatial and temporal
streams, followed by the combination of the two components as the final highlight
score for each segment.

Moreover, in (Meng et al., 2016), videos were summarized into key objects by
selecting most representative object proposals which were generated from videos.
Thus a fine-grained video summarization was achieved and what objects appear in
each video can be told. Later, Zatsushi et al. (2018) built a summary depending on
the users viewpoints, as a way of inferring what the desired viewpoint may be from
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multiple groups of videos. They took video-level semantic similarity into consider-
ation to estimate the underlying users’ viewpoints and thus generated summaries by
jointly optimizing inner-summary, inner-group and between-group variances defined
on feature representation.

More recently, the video summarization task was also performed by using vision-
language joint embeddings. For example, Chu et al. (2015) exploited video visual
co-occurrence across multiple videos by using a topic keyword for each video. They
developed a Maximal Biclique Finding (MBF) algorithm to find shots that co-occur
most frequently across videos. Plummer et al. (2017) trained image features paired
with text annotations from both same and different domains, by projecting video
features into a learned joint vision-language embedding space, to capture the story
elements and enable users to guide summaries with free-form text input. Panda and
Roy-Chowdhury (2017) summarized collections of topic-related videos with topic
keywords. They introduced a collaborative sparse optimization method with a half-
quadratic minimization algorithm, which captures both important particularities aris-
ing in a given video and generalities arsing across the whole video collection.

2.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) consist of two
components, a generator network and a discriminator network with an adversarial
learning. The generator works on fitting the true data distribution while confusing the
discriminator, whose task is to discriminate true data from fake one.

Recently GANs have been used widely for many vision problems such as image-
to-image translation (Zhu et al., 2017), image generation (Reed et al., 2016; Ghosh
et al., 2016), representation learning (Salimans et al., 2016; Mathieu et al., 2016)
and image understanding (Radford et al., 2015; Liang et al., 2017). For example,
Zhu et al. (2017) used cycle-consistent adversarial networks to translate images from
source domain to target domain in the absence of paired examples. In (Reed et al.,
2016), a text-conditional convolutional GAN was developed for generating images
based on detailed visual descriptions, which can effectively bridge the characters and
visual pixels.

To the best of our knowledge, the only existing GAN-based video summariza-
tion approach is (Mahasseni et al., 2017). In their work, video summarization was
formulated as selecting a sparse subset of video frames in an unsupervised way. In
their work, they developed a deep summarizer network for learning to minimize the
distance between training videos and the distribution of their summarizations. The
model consisted of an autoencoder LSTM as the summarizer and another LSTM as
the discriminator. Thus the summarizer LSTM was trained to confuse the discrimi-
nator, which forced the summarizer to obtain better summaries. It introduced GAN
framework to address this task and has achieved good success. So inspired by this
work, and also the good learning ability of GANs, we apply DTR-GAN method
using a GAN-based architecture. The adversarial loss is used to formulate the reg-
ularization on the generator to get better summaries. Different from this work, we
design a three-player loss that takes the random summary, generated summary and
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ground-truth summary into account, to provide better regularizations. Moreover, in
our generator network, we also introduce DTR units which can enhance the temporal
context representation.

3 Our Approach

The proposed DTR-GAN framework aims to resolve the key frame-level video sum-
marization problem by jointly training in an adversarial manner. In the following
sections, we first introduce the new dilated temporal relational (DTR) units. We then
present the details of our DTR-GAN network with a novel three-player loss.

3.1 Dilated Temporal Relation Units

A desirable video summarization model should be capable of effectively exploiting
the global temporal context embedded in future and past frames of the video in order
to better determine the uniqueness and vital roles of each frame. We thus investigate
how to achieve a good temporal context representation by introducing a new temporal
relation layer.

Prior works for temporal modeling often simply use various LSTM architectures
to encode the temporal dynamic information in the video. However, models purely
relying on the memory mechanism of LSTM units may fail to encode long-range
temporal context, such as when video sequences exceed 1000 time steps. Moreover,
redundant frames often appear in a small neighborhood of each frame. Besides mod-
eling the long-term temporal changes in the video, as can be done using LSTM units,
it is, therefore, important to further model local and multi-scale temporal relations to
obtain compact video summaries.

Atrous convolutions have achieved great success for long-range dense feature
extraction when employed in cascade or in parallel for multi-scale context captur-
ing (Chen et al., 2017a) and for temporal convolution networks using a hierarchy of
temporal convolutions (Lea et al., 2016). Inspired by this, the key idea of our DTR
unit is to capture temporal relational dependencies among video frames at multiple
time scales. This is done by employing dilated convolutions across the temporal di-
mension, as illustrated in Figure 2.

Given a certain video sequence V = {vt}Tt=1 of T frames in total, we denote
the appearance features of all frames as fv = {ft}Tt=1. The features are extracted
using the Resnet 152 (He et al., 2016) model, which has been pretrained on ILSVRC
2015 (Russakovsky et al., 2015).

Formally, DTR units function on the above appearance features fv of the whole
video by incorporating temporal relations among frames in different time spans {TS}i,
corresponding to different hole sizes hi. In our model, we use three DTR layers, each
containing four different DTR units.

As shown in Figure 2(a), for each frame vt, a DTR layer enhances its feature ft
using four DTR units, followed by the summation operation to merge all the infor-
mation together, and generated the learned feature f̂ jt in the jth layer. The enhanced
feature f̂ jt of the frame vt is computed as:
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Fig. 2: An illustration of the proposed Dilated Temporal Relational (DTR) unit. Given a video sequence
with T frames, where each frame has an appearance feature ft, our DTR units dynamically capture differ-
ent level of temporal relations by varying the hole sizes hi for integrating temporal contexts from multi-
range neighboring frames. As shown in (a), the 1st DTR layer contains four DTR units with different hole
sizes, each is a concatenation with temporal convolution. For a certain value of hi, a new temporal relation
range {TS}i, ranging from [t − hi, t + hi], is obtained. After that, a summation operation is used to
merge the learned output together, as the output f̂1

t . The whole DTR network architecture is shown in (b).
It takes the appearance features for all frames fv as the input and uses three DTR layers following a batch
normalization layer and a relu layer for each DTR layer. After each DTR layer, learned representation
f̂1, f̂2 and f̂3 are obtained. The final learned feature is illustrated as f̂ . By combining different temporal
information from each DTR unit with respect to different hi, we can enhance features of each frame by
integrating multi-scale temporal contexts.

f̂ jt =

M∑
i=1

DTRhi
([ft−hi

, ft, ft+hi
]), (1)

where M denotes the number of different hole sizes used in each DTR layer, result-
ing in different hi. Each DTRhi

represents the transformation function that operates
on the feature concatenation of ft−hi , ft and ft+hi , which has distinct parameters
with respect to each hole size hi. The transformation is formulated using a temporal
convolution along temporal dimension only and results in a learned temporal rep-
resentation feature of the same size as ft. For each DTR unit, we empirically use
M = 4 and hole sizes hi of size 1, 4, 16, and 64. For each hi, the time span for
capturing temporal relations of each frame corresponds to:

{TS}i = 2 · hi + 1. (2)

In Figure 2(b), an illustration of the DTR network with three layers of DTR units
is shown. It takes the appearance feature of the video fv as the input. The output is
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defined as f̂1, f̂2 and f̂3 after different layers, following the batch normalization and
ReLU operations, where f̂ j = {f̂ jt }Tt=1 at jth DTR layer. The final output of DTR
network is defined as f̂ , where f̂ = {f̂t}Tt=1, which combines different temporal re-
lations among video sequences. After summing the features obtained from DTRhi

,
the appearance feature fv can be converted into a temporal-sensitive feature f̂ that ex-
plicitly encodes multi-scale temporal dependencies. The size of the filters are ω×W ,
where W corresponds to the filter size along the feature dimension. The size of re-
ceptive field can be computed as:

RF = hi · (ω − 1) · j + 1, (3)

where the size of the receptive field RF is computed by different hole sizes hi at the
jth layer. Here we use a filter ω of size 3× 1.

The DTR network expands the receptive field without any reduction in tempo-
ral resolution to model long-range temporal dependencies, which has the advantages
over other spatio-temporal feature extractors, like (Tran et al., 2015) and (Feichten-
hofer et al., 2016). In their work, they encode each video clip into a fixed descriptor
and cannot produce the embedding results on a frame-level, which is required in our
task for generating frame-level scores afterward.

Each DTR unit models the temporal relationships by capturing neighboring fea-
tures of different time spans. Thus it can sense different neighboring features along
the time space, and learns the dependencies among these different features. Besides,
DTR also has the advantage of low computational complexity because of its simplic-
ity. The proposed DTR unit is general enough to facilitate any network architectures
to enhance temporal information encoding.

3.2 DTR-GAN

3.2.1 Generator Network

As shown in Figure 3, given the appearance features F of all frames, the generator
G aims to produce the confidence score ss of each frame being a key frame and the
encoded compact video feature fe. The whole generator architecture is composed
of three modules: the temporal encoding module J for learning the temporal rela-
tions among frames, the compact video representation module Ge for generating the
learned visual feature of the whole video, and the summary predictorGs for obtaining
the final confidence score of each frame.

a) Temporal Encoding Module J . The module J integrates a Bi-LSTM layer (Graves
and Schmidhuber, 2005) and DTR network containing three DTR layers with twelve
units in total, which encode both long-term temporal dependencies and multi-scale
temporal relations with respect to different hole sizes.

The 2048-dimensional appearance features {ft}Tt=1 of all frames are taken as
inputs of J . In the first branch, they are sequentially fed into one recurrent Bi-LSTM
layer. The layer consists of both a backward and a forward path, each consisting of an
LSTM with 1024 hidden cells, to ensure modeling of temporal dependencies both on
past and future frames. We thus obtain an updated 2048-dimensional feature vector
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Fig. 3: The network architecture of our DTR-GAN. Taking a video sequence V as inputs, we can obtain
appearance features of all frames F by passing the original frames into the pretrained ResNet-152 model.
The generator G is used to predict key frames consists of three components: 1) a Temporal Encoding
Module J that integrates both Bi-LSTM units and stacked DTR units is employed to produce enhanced
features of each frame; 2) the confidence scores ss of all frames are then predicted by passing the features
into the Summary predictor Gs; 3) as another branch, the enhanced features of all frames are combined
into the features fe by the Compact Video Representation Module Ge. The discriminator D then uses fe
and ss to generate representations of three summaries, i.e. ground-truth summary Ig , predicted summary
Is and randomly selected summary Ir . These three summary representations are then concatenated with
the encoded features of the original video and are further fed into a shared Bi-LSTM module to get a real
and two fake losses D(fv , Ig), D(fv , Is), D(fv , Ir) in order to justify their fidelity.

{f̄t}Tt=1 for each frame as the concatenation of the forward and backward hidden
states.

In the second branch, following Eq.(1), each DTR layer computes f̂ jt for each
frame and passes it to the next DTR layer, and achieves multi-scale temporal relations
among frames by making use of different hole sizes hi for better video representation.
After passing over three DTR layers, we get the final evolved feature of each frame,
and it is denoted as {f̂t}Tt=1. Finally, the outputs of the module J are two sets of
updated features {f̄t}Tt=1 and {f̂t}Tt=1 for all frames.

b) Compact Video Representation ModuleGe. Given the outputs of the module
J , the encoded features of all frames are produced as fe = {fe1 , fe2 , . . . , feT }, where
fet = Ge(f̂t, f̄t). In our setting, we use Ge as a concatenation function followed by a
fully connected layer, to learn the merged representation for video encoding.

The outputs of model Ge denoted as fet are also used as the input of the discrim-
inator network with three-player loss, which will be discussed later in Section 3.2.2.

c) Summary Predictor Gs. To predict confidence score ss = {s1, s2, . . . , sT }
for all frames as the video summary results, we introduce another summary predictor
module Gs, as st = Gs(f̂t, f̄t). The score is obtained by first concatenating of f̂t
and f̄t, and then passing the result to a fully-connected layer and a dropout layer that
output one value for each input frame. After that, a sigmoid non-linearity is applied
to each output value to produce the summary score. In this way, the confidence scores
of all frames are generated by summary predictor Gs as the final summary results.

3.2.2 Discriminator Network

In order to produce a high-quality summary, it is also desirable to evaluate whether
the resulting summary encodes all main video contents of the original video and also
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consists of as few frames as possible from a global perspective. The key require-
ment is to measure the video correspondence between the obtained summary and the
original video.

Different from the traditional discriminator architecture (Goodfellow et al., 2014)
that only focuses on justifying the fidelity of a generated sample, the discriminator
of our DTR-GAN instead learns the correspondence between input video and re-
sulting summary, which can be treated as a paired target. Furthermore, in order to
ensure that the summary is informative, we present a three-player loss. Instead of the
commonly used two-player loss (Arjovsky et al., 2017; Zhu et al., 2017), this loss
further enforces the discriminator to distinguish between the learned summary and
a trivial summary consisting of randomly selected frames. The whole architecture is
illustrated in Figure 3.

First, the inputs for the discriminator D are three duplicates of the original video
feature representation fv , each paired with a different summary. The summaries are
the ground-truth summary Ig , the resulting summary of the generator Is, and a ran-
dom summary Ir respectively. The representation of each summary is obtained based
on the feature representation fe from the generator, allowing the discriminator to
utilize the encoded temporal information.

Let us denote the ground-truth summary score as sg ∈ {0, 1}, the resulting sum-
mary score as ss ∈ [0, 1], and the random summary score, which is sampled from a
uniform distribution, as sr ∈ [0, 1]. The dimension of sr is the same as the one of sg
and ss. The random summary score sr gives random importance scores for frames
in the video. Then the summaries Ig , Is and Ir can be computed by multiplying the
corresponding encoded frame-level features fe with the summary scores sg , ss and
sr, respectively:

Ig = fe · sg,
Is = fe · ss,
Ir = fe · sr.

(4)

The discriminator D consists of four Bi-LSTM models, each with one layer, fol-
lowed by a three-layer fully connected neural network and a sigmoid non-linearity to
produce the discriminator score for the three pairs (fv, Ig),(fv, Is) and (fv, Ir). All
Bi-LSTMs have the same architecture but some of them have different parameters.

We pass the original video feature representation fv to one Bi-LSTM with a set
of parameters, getting the hidden states, and pass the encoded summaries Ig , Is and
Ir to the other three Bi-LSTM with shared parameters, also getting the hidden states.
The forward and backward paths in the Bi-LSTM consist of 256 hidden units each.
We can thus obtain three learned representation pairs for checking the fidelity of the
true representation pair and the other two fake ones. Then we concatenate each pair
followed three fully connected layers. The dimensions of three layers are 512, 256
and 128. After that, a sigmoid layer is applied for obtaining the discriminator scores
for each pair.
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3.2.3 Adversarial learning

Inspired by the objective function proposed in recent work on Wasserstein GANs (Ar-
jovsky et al., 2017), which has good convergence properties and alleviates the issue
of mode collapse, we optimize our adversarial objective with a three-player loss via
a min-max game.

Specifically, given the three learned modules J,Ge, Gs of the generator and the
discriminatorD, we jointly optimize all of them in an adversarial manner. The global
objective over real loss D(fv, Ig) and the two fake losses D(fv, Is), D(fv, Ir) en-
sures that the summaries capture enough key video representation, as well as avoids
the learning of a trivial randomly shorten sequence as the summary. The min-max
adversarial learning loss can be defined as:

min
G

max
D
L(G,D) = Eg[D(fv, Ig)]

− τEs[D(fv, Is)]− (1− τ)Er[D(fv, Ir)],
(5)

where τ is the balancing parameter between the resulting summary and the random
summary. By substituting J,Ge, Gs into G, and following Eq.(2), the objective can
be reformulated as:

min
J,Ge,Gs

max
D
L(J,Ge, Gs, D)

= Eg[D(fv, Ge(J(fv)) · sg)]

− τEs[D(fv, Ge(J(fv)) ·Gs(J(fv)))]

− (1− τ)Er[D(fv, Gr(J(fv)) · sr)].

(6)

We empirically treat each player equally since both of the two fake pairs con-
tribute to forcing the discriminator to learn the compact and complete real summary
from fake ones. Thus we set the balancing parameter τ = 0.5, that is, 0.5 for both of
the fake pairs, namely the pairs of the generated summary and the random summary.

To optimize the generator, we further incorporate a supervised frame-level sum-
marization loss Lsumm(G) between the resulting summary ss and the ground-truth
summary sg during the adversarial training:

Lsumm(G) = ||ss − sg||22. (7)

This loss aligns the generated summary with the real summary, guiding the gen-
erator to generate high-quality summaries by adding more regulations. The optimal
generator can thus be computed as G∗:

G∗ = arg min
J,Ge,Gs

max
D
L(J,Ge, Gs, D) + Lsumm(G). (8)

3.3 Inference Process

The inference process can be shown in Figure 4. Given each testing video, the pro-
posed DTR-GAN model takes the whole video sequence as input. It then generates
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Fig. 4: The inference process of the proposed DTR-GAN. The final confidence score for each frame of
being key frame is obtained by passing the visual representation features to the temporal encoding mod-
ule J and the summary predictor Gs, without compact video representation model Ge as well as the
discriminator D.

the confidence scores of all frames as the final summary result using only the gener-
ator during the inference process. Specifically, the testing video is first passed to the
temporal encoding module J , generating the learned temporal representation, which
can efficiently exploit global multi-scale temporal context. Then the summary pre-
dictor Gs is applied to get the final predicted scores for each video.

Thus, the main differences for our DTR-GAN between training and inference
phases are: 1) Discriminator D is not used for inference, while training phase relies
highly on it. 2) The compact Video Representation model, which is used to learn the
merged video encoding for further training for discriminatorD, is not required during
inference phase.

4 Experiments

4.1 Experimental Settings

We will first introduce the three public datasets that we use and present the evaluation
metrics for quantitative comparisons, before providing the details of the implementa-
tion.

Datasets. We evaluate our method on three public benchmark datasets for video
summarization, i.e., SumMe (Gygli et al., 2014), TVSum (Song et al., 2015) and
YouTube (De Avila et al., 2011). The SumMe dataset contains 25 videos covering
multiple events from both the first-person and the third-person view. The length of
the videos ranges from 1 to 6 minutes. The TVSum dataset contains 50 videos captur-
ing 10 categories which are selected from the TRECVid Multimedia Event Detection
(MED) task (Smeaton et al., 2006). It contains many topics such as news, cooking
and sports and the length of each video ranges from 1 to 5 minutes. The YouTube
dataset consists of 50 videos. The video lengths are from 1 to 10 minutes, and the
contents include news, sports and cartoons. Following the previous methods (Zhang
et al., 2016b; Mahasseni et al., 2017), we randomly select 80% of the videos for
training and 20% for testing.

Evaluation Metrics. For fair comparison, we adopt the same keyshot-based pro-
tocol (Zhang et al., 2016b) as in (Mahasseni et al., 2017) and (Zhou et al., 2018), i.e.,
the harmonic F-measure, to evaluate our method, quantifying the similarity between
the generated summary and the ground-truth summary for each video. Given the gen-
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erated summary A and the ground-truth summary B, the precision P and recall R of
the temporal overlap are defined as:

P =
overlap duration between A and B

duration of A
,

R =
overlap duration between A and B

duration of B
,

(9)

the final harmonic F-measure (F ) is computed as:

F = 2P ·R/(P +R) · 100%. (10)

We also follow the process of (Zhang et al., 2016b) to generate keyshot-level
summaries from the key-frame level and the importance score-level summaries. We
first apply the temporal segmentation method KTS (Potapov et al., 2014) to get video
segments. Then if a segment contains more than one key frame, we give all frames
within that segment scores of 1. Afterward, we select the generated keyshots under
the constraint that the summary duration should be less than 15% of the duration of
the original video by using the knapsack algorithm (Song et al., 2015).

Implementation Details. We implement our work using the TensorFlow (Abadi
et al., 2015) framework, with 1 GTX TITAN X 12GB GPU on a single server. We set
the learning rate as 0.0001 for the generator and 0.001 for the discriminator. During
the training process, we experimentally train the generator twice and train the dis-
criminator once in each epoch. We randomly select a shot with 1000 frames and 10%
interval overlaps with neighboring shots to form each batch of the video in order to
reduce the effect of edge artifacts. In test, we feed the whole video sequence as input,
which can enable the model to sense the temporal dependencies in the whole time
space.

4.2 Comparison with the state-of-the-art methods

We compare our DTR-GAN to the following supervised state-of-the-art methods to
illus- trate the advantages of our algorithm:

– Interestingness (Gygli et al., 2014)Interestingness (Gygli et al., 2014)Interestingness (Gygli et al., 2014) A method based on an interestingness score
to select an optimal subset, which takes into account low-level information and
high-level features.

– Submodularity (Gygli et al., 2015)Submodularity (Gygli et al., 2015)Submodularity (Gygli et al., 2015) A method based on subset selection over sum-
marization objectives: interestingness, representativess and uniformity (for retain-
ing the temporal coherence).

– Summary transfer (Zhang et al., 2016a)Summary transfer (Zhang et al., 2016a)Summary transfer (Zhang et al., 2016a) A non-parametric supervised approach
that transfers the summary stuctures from human-created summaries of the train-
ing videos to unseen test videos.

– Seq-DPP (Gong et al., 2014)Seq-DPP (Gong et al., 2014)Seq-DPP (Gong et al., 2014) A probabilistic model, sequential determinantal point
process (seqDPP), for diverse sequential subset selection to select a subset of
frames as summary result.
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Table 1: Comparison results obtained by our method and other supervised approaches on SumMe (Gygli
et al., 2014), TVSum (Song et al., 2015) and YouTube (De Avila et al., 2011) datasets in terms of harmonic
F-measure.

Method SumMe TVSum YouTube

Interestingness (Gygli et al., 2014) 39.3 - -
Submodularity (Gygli et al., 2015) 39.7 - -

Summary transfer (Zhang et al., 2016a) 40.9 - 60.2
Seq-DPP (Gong et al., 2014) - - 60.8

DPP-LSTM (Zhang et al., 2016b) 38.6 54.7 -
GANsup (Mahasseni et al., 2017) 41.7 56.3 62.5
DR-DSNsup (Zhou et al., 2018) 42.1 58.1 -

DySeqDPP (Li et al., 2018) 44.3 58.4 -
DTR-GAN 44.6 61.3 62.9

– DPP-LSTM (Zhang et al., 2016b)DPP-LSTM (Zhang et al., 2016b)DPP-LSTM (Zhang et al., 2016b) A method that exploits LSTMs to capture variable-
range inter-dependencies, and uses DPP as an complement to encourage diverse
selected frames.

– GANsup (Mahasseni et al., 2017)GANsup (Mahasseni et al., 2017)GANsup (Mahasseni et al., 2017) A GAN-based method which aims to minimize
the distance between feature representations of the training videos and their sum-
marizations by integrating variational auto-encoders.

– DR-DSNsup (Zhou et al., 2018)DR-DSNsup (Zhou et al., 2018)DR-DSNsup (Zhou et al., 2018) A deep summarization network based on deep re-
inforcement learning that jointly accounts for diversity and representativeness of
generated summaries.

– DySeqDPP (Li et al., 2018)DySeqDPP (Li et al., 2018)DySeqDPP (Li et al., 2018) Utilizes a dynamic Seq-DPP (Gong et al., 2014) to-
gether with a reinforcement learning algorithm to address the dynamic diverse
subset selection problem, and to learn to impose the local diversity in the input
videos.

Table 1 shows the quantitative results on the SumMe, TVSum and YouTube datasets.
It can be observed that our DTR-GAN substantially outperforms the other supervised
state-of-the-art methods on three datasets. Particularly, on the SumMe dataset, DTR-
GAN achieves 2.5% better performance than the state-of-the-art method by Zhou
et al. (2018) in terms of F-measure, and 3.2% better on TVSum. Such performance
improvements indicate the superiority of our DTR-GAN in encoding long-term tem-
poral dependencies and correlations for determining the importance of each frame.
At the same time, this also illustrates the effectiveness of validating the information
completeness and summary compactness from a global perspective using our three-
player adversarial training approach.

From Table 1, we can observe that our DTR-GAN achieves better performance
(6.0% and 6.6% in terms of F-measure) than the DPP-LSTM work (Zhang et al.,
2016b) on two datasets. In (Zhang et al., 2016b), the DPP-LSTM model is designed
with containing two LSTM layers, one for modeling the forward direction video se-
quence, and the other for the backward direction. They also combine the LSTM lay-
ers’ hidden states and the input visual features with a multi-layer perceptron, together
with the determinantal point process for enhancement. Thus, from the experimental
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Table 2: Comparison of results for DTR units analysis for the SumMe (Gygli et al., 2015) and TVSum (Song
et al., 2015) dataset in terms of harmonic F-measure.

Method DTR units SumMe TVSum

DTR-GAN holes (1,4,16,64) 44.6 61.3
DTR-GAN (holes 1,2,4,16) holes (1,2,4,16) 41.4 59.2

DTR-GAN (holes 16,32,64,128) holes (16,32,64,128) 42.6 60.8

results, we can come to the conclusion that DTR-GAN with LSTM and DTR net-
works can achieve better results by combining Bi-LSTM and DTR units together,
allowing superior capturing of global multi-scale temporal relations.

Note that, another recent work (Mahasseni et al., 2017) also adopted the adver-
sarial networks on temporal features produced by LSTMs for video summarization.
However, our DTR-GAN is different from it: 1) the generator in (Mahasseni et al.,
2017) encodes all different information into one fixed-length representation, which
may reduce the model learning capabilities given different length of video sequence;
2) our DTR-GAN further introduces a new three-player loss to avoid that the network
selects random trivial short sequences as the results; 3) in the generator network, be-
sides the traditional LSTM, we further incorporate a new DTR unit to facilitate the
temporal relation encoding by further exploiting multi-scale local dependencies.

The most recent state-of-the-art work by Zhou et al. (2018) achieves the best
video summary result among the existing methods. The authors train deep summa-
rization network based on LSTM networks via reinforcement learning. They design
a reward function that jointly accounts for diversity and representativeness. In our
work, we achieve 2.5% and 3.2% higher F-measure than (Zhou et al., 2018), due to
the fact that it regularizes for generator in order to better obtain the summaries, as
well as better temporal modeling by combining Bi-LSTM and DTR units.

4.3 DTR Units Analysis

In this section, we analyze the summarization results when different hole sizes are
used in the DTR units. The configurations that we are considering are:

– DTR-GAN (holes 1,2,4,16). DTR units with hole size of (1,2,4,16) for each layer
in order to compare the proposed hole size of (1,4,16,64) with this variant that
uses a smaller range of temporal modeling.

– DTR-GAN (holes 16,32,64,128). DTR units with hole size of (16,32,64,128) for
each layer in order to compare the proposed hole size of (1,4,16,64) with this
variant that uses a larger range of temporal modeling.

As our DTR units employ different hole sizes to capture multi-scale temporal de-
pendencies, it is also interesting to explore the effect of selecting different hole sizes
on the summarization performance. We have tested two additional hole size settings,
namely (1,2,4,16) and (16,32,64,128), whereas the proposed setting in all other ex-
periments corresponds to (1,4,16,64). The model with hole size of (1,2,4,16) obtains
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Table 3: Comparison of results for our ablation experiments, indicating the importance of the various
components in our model for the SumMe (Gygli et al., 2015) and TVSum (Song et al., 2015) dataset
in terms of harmonic F-measure. (The texts in blue color highlight the components that differ from the
original DTR-GAN.)

Method DTR units Bi-LSTM G gt loss Discriminator SumMe TVSum

DTR-GAN 3 3 3 3-player loss 44.6 61.3
DTR-GAN w/o Bi-LSTM in G 3 7 3 3-player loss 43.7 59.6
DTR-GAN w/o DTR units in G 7 3 3 3-player loss 41.7 59.2

DTR-GAN w/o rand1 3 3 3 2-player loss 40.6 59.4
DTR-GAN LS loss2 3 3 3 LS loss 42.9 60.2
DTR-GAN w G only 3 3 3 7 40.8 55.8

DTR-GAN w/o G gt loss 3 3 7 3-player loss 41.9 56.9

1 This one compares with the work (Arjovsky et al., 2017)
2 This one compares with the work (Mao et al., 2017), and “LS” stands for “least squares”

a smaller range of temporal dilation, while the model with hole size of (16,32,64,128)
achieves a larger range of temporal dilation, compared with the proposed DTR-GAN
model, which contains intermediate a larger variants of hole sizes to capture multi-
scale temporal relations better.

From Table 2, we can observe that both model variants achieve inferior perfor-
mance to the 44.6% and 61.3% of DTR-GAN. Moreover, there is a minor perfor-
mance difference between the results for larger and smaller dilation hole sizes.

The above comparison results indicate that with larger hole size we can obtain
better results due to the larger time span. On the other hand, small holes are also re-
quired because of the fact that neighboring frames tend to share more similar features
and have to some extent more temporal dependencies.

4.4 Ablation Analysis

We conduct extensive ablation studies to validate the effectiveness of different com-
ponents in our model by experimenting with different model variants. The different
ablation analyses and the varied model component combinations on SumMe and TV-
Sum datasets are as followed:

4.4.1 Ablation Models

Comparisons of Each Temporal Encoding Module

– DTR-GAN w/o Bi-LSTM in G. Drop the Bi-LSTM model in the generator in
DTR-GAN to analyze the effect of the Bi-LSTM network in the proposed model.

– DTR-GAN w/o DTR units in G. Drop the DTR network in the generator in
DTR-GAN to analyze the effect of the DTR units in the proposed model.
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Comparisons of Disciminator

– DTR-GAN w/o rand. Apply two-player loss by dropping the random summary
loss in the discriminator to analyze the effect of the three-player loss in the pro-
posed model comparing with the commonly used two-player loss structure.

– DTR-GAN least squares loss. Apply the Least Squares loss function (Mao et al.,
2017) instead of the loss designed in Wasserstein GAN (Arjovsky et al., 2017) to
analyze the effect of loss functions in the proposed DTR-GAN.

Comparison of Adversarial Learning

– DTR-GAN w G only. Drop the discriminator part with the adversarial training,
and use only the generator in order to analyze the effect of adversarial learning in
the proposed model.

Comparison of Supervised Loss

– DTR-GAN w/o G gt loss. Drop the ground-truth loss in the generator to analyze
the effect of the supervised loss for generating summaries with human annotated
labels.

4.4.2 Ablation Discussion

In Table 3, we illustrate different settings including Bi-LSTM, G gt loss and Dis-
criminator components. As shown in the second row, the details of the proposed
DTR-GAN are: hole sizes are 1,4,16, and 64 for DTR units in each DTR layer, Bi-
LSTM and G gt loss are included, and three-player loss discriminator is applied. The
rest rows show the different model variants for further ablation discussion, where the
texts in blue color represent different components that differ from the proposed DTR-
GAN model.

The Effect of Each Temporal Encoding Module. Note that in our generator net-
work, we incorporate both the long-term LSTM units and multi-scale DTR units. By
comparing model variants without either Bi-LSTM unit or our DTR unit with our full
DTR-GAN, we can better demonstrate the effect of each module on the final summa-
rization performance. It can be observed that the module capability is decreased by
either removing Bi-LSTM units or DTR units.

From Table 3, we can see that by removing Bi-LSTM module, the performance
of our approach decreases by 0.9% and 1.7%. While by removing DTR units the
performance decreases by 2.9% and 2.1%. This shows that our DTR units have more
effect than the Bi-LSTM module and this is due to the fact that better multi-scale
temporal dependency helps learn better video temporal representation resulting in
more compact and complete summaries. Besides, it also shows that Bi-LSTM can
enhance the performance for the whole model, so we combine these two models
together for better video summarization generation.

The Effect of the Discriminator. We also test the performance of a model vari-
ant that only uses the standard two-player loss, i.e. the pairs of the original video with
the ground-truth summary and with the generated summary. This is to validate the ef-
fectiveness of our proposed three-player objective in the adversarial training, which
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is also based on the Wasserstein GAN structure (Arjovsky et al., 2017). We can ob-
serve that there is a large performance difference between standard two-player loss
and our proposed three-player loss. The reason is that the random summary provides
more regularization which ensures that the video representations are not learned from
a trivial randomly shorten sequence.

Moreover, we replace the Wasserstein GAN with the Least Squares GAN (Mao
et al., 2017) structure with our proposed three-player loss. From Table 3, we can see
that the performance of this baseline is 42.9% and 60.2%, which are still 0.8% and
2.1% better than the results of previous state-of-the-art work by Zhou et al. (2018).
This further demonstrates that our proposed approach does not rely on GAN struc-
ture.

The Effect of the Adversarial Learning Module. In addition, we also trained
the model only using the generator. The performance of this baseline is only 40.8%
and 55.8%, which are lower than most other ablation models and are 3.8% and 5.5%
lower than the proposed DTR-GAN architecture. This demonstrates that the adver-
sarial training with discriminator works better than non-adversarial training.

The discriminator functions to discriminate the ground-truth summary from gen-
erated and random summaries, which helps to enforce that the generator generates
more complete and compact summaries.

The Effect of the Supervised Loss. During the adversarial training, we introduce
the ground-truth loss for the generator as a form of regularization, by aligning the
generated frame-level importance scores with the ground-truth scores.

From Table 3, we can see that this model obtains better performance on frame-
level video summarization with the supervised loss. Specifically, by removing the
“G gt loss” component, the performance drops by 2.7% and 4.4%. This illustrates
that our model can learn much better by using the human annotated labels.

4.5 Qualitative Results

To better demonstrate some key components of our framework, we visualize an exam-
ple of the summary results overlaying the ground-truth frame-level important scores
in Figure 5 and Figure 6. We use the selected key frames obtained via the importance
scores that are generated by the generator as a summary.

Figure 5 illustrates the visualized results on the video Statue of Liberty in the
SumMe dataset on “DTR-GAN”, “DTR-GAN w/o range”, “DTR-GAN w/o G gt loss”
and “DTR-GAN w G only”. Figure 6 illustrates the visualized results on the video Bus
in Rock Tunnel in the SumMe dataset on “DTR-GAN”, “DTR-GAN (holes 1,2,4,16)”,
“DTR-GAN (holes 16,32,64,128)”, “DTR-GAN w/o DTR units in G”.

From these figures, we can see that visualized results comply with the quantitative
results in Table 3, where our model obtains reasonably better generated video sum-
mary results than the rest three models. All of the key components of our proposed
framework contribute to improving overall performance.

To further demonstrate the effectiveness of our framework, we provide qualitative
examples of the summary results as shown in Figure 7. The selected key frames
are the images outlined in red, which are obtained via the importance scores that
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a) Example frames from video Statue of Liberty in SumMe

c) DTR-GAN w/o G_gt_loss

d) DTR-GAN w/o rand e) DTR-GAN w G only

b) DTR-GAN

Fig. 5: Video summarization results of some variants of our proposed DTR-GAN method for the video
Statue of Liberty in SumMe (Gygli et al., 2015). The dark blue bars in b), c), d), e) are the ground-truth
frame-level scores, and the colored segments are the summary results generated by different model vari-
ants.

a) Example frames from video Bus in Rock Tunnel in SumMe

c) DTR-GAN_(holes 1,2,4,16)

d) DTR-GAN_(holes 16,32,64,128) e) DTR-GAN w/o DTR units in G

b) DTR-GAN

Fig. 6: Video summarization results of some variants of our proposed DTR-GAN method for the video
Bus in Rock Tunnel in SumMe (Gygli et al., 2015). The dark blue bars in b), c), d), e) are the ground-
truth frame-level scores, and the colored segments are the summary results generated by different model
variants.

are generated by the generator as a summary. The images with grey outlines denote
frames that were not selected.

From this figure, we can observe that the model tends to exclude the trivial in-
formation (i.e. interview parts in the video), and select more informative frames of
the bicycle stunt show. At the same time, the bicycle stunt part is also summarized in
order to better present the essence of the show, by removing redundant frames.
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Fig. 7: Qualitative examples of our proposed DTR-GAN for frame-level video summarization in TVSum
dataset. The images of red outlines are the selected key frames, while the images with grey outlines denote
frames that were not selected.

5 Conclusion

In this paper, we proposed DTR-GAN for frame-level video summarization. It con-
sists of a DTR generator and a discriminator with three-player loss and is trained
in an adversarial manner. Specifically, the generator combines two temporal depen-
dency learning modules, Bi-LSTM and our proposed DTR network with three layers
of four different hole sizes in each layer for multi-scale global temporal learning. In
the discriminator, we use a three-player loss, which contains the generated summary,
random summary, and ground-truth to introduce more restrictions during adversarial
training. This helps the generator to generate more complete and compact summaries.
Experiments on three public datasets SumMe, TVSum and YouTube demonstrate the
effectiveness of our proposed framework. In future work, we will continue to inves-
tigate this line of research by utilizing reinforcement learning algorithm (Fu et al.,
2019), attention mechanism (Ji et al., 2019) and multi-stage learning (Huang et al.,
2019) within the DTR-GAN framework to further improve generic video summariza-
tion.
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