Skip to main content
Log in

A nonconvex and nonsmooth anisotropic total variation model for image noise and blur removal

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a nonconvex and nonsmooth anisotropic total variation model is proposed, which can provide a very sparser representation of the derivatives of the function in horizontal and vertical directions. The new model can preserve sharp edges and alleviate the staircase effect often arising in total variation (TV) based models. We use graduated nonconvexity (GNC) algorithm to solve the proposed nonconvex and nonsmooth minimization problem. Starting with a convex initialization, it uses a family of nonconvex functional to gradually approach the original nonconvex functional. For each subproblem, we use function splitting technique to separately address the nonconvex and nonsmooth properties, and use augmented Lagrangian method (ALM) to solve it. Experiments are conducted for both synthetic and real images to demonstrate the effectiveness of the proposed model. In addition, we compare it with several state-of-the-art models in denoising and deblurring applications. The numerical results show that our model has the best performance in terms of PSNR and MSSIM indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Acar R, Vogel C (1997) Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10(6):1217–1229

    MathSciNet  MATH  Google Scholar 

  2. Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations. Springer, Berlin

    MATH  Google Scholar 

  3. Blake A, Zisserman A (1987) The graduated non-convexity algorithm: visual reconstruction. MIT Press, Cambridge, pp 131–166

    Google Scholar 

  4. Bredies K, Kunisch K, Pock T (2010) Total generalized variation. Siam Journal on Imaging Sciences 3(3):492–526

    MathSciNet  MATH  Google Scholar 

  5. Burrus C-S (2009) Iterative reweighted least squares. Commun Pure Appl Math 44(6):1–9

    Google Scholar 

  6. Callet PL, Autrusseau F (2005) Subjective quality assessment IRCCyN/IVC database. http://www.irccyn.ec-nantes.fr/ivcdb/

  7. Chambolle A, Pock T (2011) A first-order primal-dual algorithm for convex problems with applications to imaging. Journalof Mathematical Imaging and Vision 40(1):120–145

    MathSciNet  MATH  Google Scholar 

  8. Chan TF, Esedoglu S, Park F-E (2007) Image decomposition combining staircase reduction and texture extraction. J Vis Commun Image Represent 18(6):464–486

    Google Scholar 

  9. Charbonnier P (1997) Deterministic edge-preserving regularization in computed imaging. IEEE Trans Image Process 6(2):298–311

    MathSciNet  Google Scholar 

  10. Chen L, Bentley P, Mori K, Misawa K (2018) Drinet for medical image segmentation. IEEE Trans Med Imaging 37(11):2453–2462

    Google Scholar 

  11. Chen X, Pan L (2018) A survey of graph cuts/graph search based medical image segmentation. IEEE Rev Biomed Eng:112–124

    Google Scholar 

  12. Chen H, Wang C, Song Y, Li Z (2015) Split Bregmanized anisotropic total variation model for image deblurring. J Vis Commun Image Represent:282–293

    Google Scholar 

  13. Chen B, Yang Z, Huang S, Cui Z (2017) Cyber-physical system enabled nearby traffic flow modelling for autonomous vehicles. IEEE 36th international performance computing and communications conference (IPCCC). IEEE, pp. 1–6

  14. Daubechies I, Devore R, Fornasier M (2010) Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Math 63(1):1–38

    MathSciNet  MATH  Google Scholar 

  15. Esedoḡlu S, Osher S-J (2004) Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Commun Pure Appl Math 57(12):1609–1626

    MathSciNet  MATH  Google Scholar 

  16. Fornasier M, Rauhut H, Ward R (2010) Low-rank matrix recovery via iteratively reweighted least squares minimization. SIAM J Optim 21(4):1614–1640

    MathSciNet  MATH  Google Scholar 

  17. Geman S, Geman D (1984) Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell (6, 6):721–741

    MATH  Google Scholar 

  18. Gilboa G, Osher S (2008) Nonlocal operators with applications to image processing. SIAM Journal on Multiscale Modeling & Simulation 7(3):1005–1028

    MathSciNet  MATH  Google Scholar 

  19. Grasmair M, Lenzen F (2010) Anisotropic total variation filtering. Appl Math Optim 62(3):2323–2339

    MathSciNet  MATH  Google Scholar 

  20. Hintermüller M, Wu T (2013) Nonconvex TVq-models in image restoration: analysis and a trust-region regularization based superlinearly convergent solver. SIAM Journal on Imaging Sciences 6(3):1385–1415

    MathSciNet  MATH  Google Scholar 

  21. Jalalzai K (2016) Some remarks on the staircasing phenomenon in total variation-based image denoising. Journal of Mathematical Imaging and Vision 54(2):256–268

    MathSciNet  MATH  Google Scholar 

  22. Jidesh P (2014) A convex regularization model for image restoration. Comput Electr Eng 40(8):66–78

    Google Scholar 

  23. Jing L, Liu S, Li Z, Meng S (2009) An image reconstruction algorithm based on the extended Tikhonov regularization method for electrical capacitance tomography. Measurement 42(3):368–376

    Google Scholar 

  24. Jung M, Kang M (2015) Efficient nonsmooth nonconvex optimization for image restoration and segmentation. J Sci Comput 62(2):336–370

    MathSciNet  MATH  Google Scholar 

  25. Knoll F, Bredies K, Pock T, Stollberger R (2011) Second order total generalized variation (TGV) for MRI. Magn Reson Med 65(2):480–491

    Google Scholar 

  26. Liu X, Huang L (2014) A new nonlocal total variation regularization algorithm for image denoising. Math Comput Simul 97(1):224–233

    MathSciNet  Google Scholar 

  27. Liu J, Huang T-Z, Selesnick I-W, Lv X-G, Chen P-Y (2013) Image restoration using total variation with overlapping group sparsity. Inf Sci:232–246

    MathSciNet  MATH  Google Scholar 

  28. Lou Y, Zeng Y, Osher S, Xin J (2015) A weighted difference of anisotropic and isotropic total variation model for image processing. SIAM Journal on Imaging Sciences 8(3):1798–1823

    MathSciNet  MATH  Google Scholar 

  29. Lu C, Tang J, Yan S, Lin Z (2016) Nonconvex nonsmooth low-rank minimization via iteratively reweighted nuclear norm. IEEE Trans Image Process 25(2):829–839

    MathSciNet  MATH  Google Scholar 

  30. Lysaker M, Lundervold A, Tai XC (2003) Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process 12(12):79–90

    MATH  Google Scholar 

  31. Moll J-S (2005) The anisotropic total variation flow. Math Ann 332(1):177–218

    MathSciNet  MATH  Google Scholar 

  32. Needell D (2009) Noisy signal recovery via iterative reweighted L1-minimization. Asilomar Conference on Signals, Systems and Computers IEEE Press, pp. 113–117

  33. Nguyen D, Jeon J (2015) Multiple-constraint variational framework and image restoration problems. IET Image Process 9(6):435–449

    Google Scholar 

  34. Nikolova M (1999) Markovian reconstruction using a GNC approach. IEEE Trans Image Process 8(9):1204–1220

    Google Scholar 

  35. Nikolova M, Ng M-K, Tam C-P (2010) Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Trans Image Process 19(12):3073–3088

    MathSciNet  MATH  Google Scholar 

  36. Nikolova M, Ng M-K, Zhang S, Ching W-K (2008) Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM Journal on Imaging Sciences 1(1):2–25

    MathSciNet  MATH  Google Scholar 

  37. Papafitsoros K, Schönlieb C-B (2014) A combined first and second order variational approach for image reconstruction. Journal of Mathematical Imaging and Vision 48(2):308–338

    MathSciNet  MATH  Google Scholar 

  38. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639

    Google Scholar 

  39. Phillips D (1962) A technique for the numerical solution of certain integral equations of the first kind. J ACM 9(1):84–97

    MathSciNet  MATH  Google Scholar 

  40. Ponomarenko P, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F (2009) Tid2008- a database for evaluation of full-reference visual quality assessment metrics. Adv Mod Radioelectron 10(4):30–45

    Google Scholar 

  41. Rudin L-I, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D Nonlinear Phenomena 60(1–4):259–268

    MathSciNet  MATH  Google Scholar 

  42. Rusu C, Dumitrescu B (2012) Iterative reweighted l1 design of sparse FIR filters. Signal Process 92(4):905–911

    Google Scholar 

  43. Shi M, Han T, Liu S (2015) Total variation image restoration using hyper-Laplacian prior with overlapping group sparsity. Signal Process:65–76

    Google Scholar 

  44. Shi M, Xu T, Feng L, Liang J, Zhang K (2013) Single image deblurring using novel image prior constraints. Optik 124(20):4429–4434

    Google Scholar 

  45. Tang L, Fang Z (2016) Edge and contrast preserving in total variation image denoising. EURASIP Journal on Advances in Signal Processing 2016(1):1–13

    MathSciNet  Google Scholar 

  46. Tihonov A (1963) On the solution of ill-posed problems and the method of regularization. Dokl Akad Nauk SSSR:501–504

  47. Tikhonov A-N, Arsenin V-Y (1977) Solutions of ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  48. Wang Z, Bovik A-C, Sheikh H-R (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Google Scholar 

  49. Wang L, Zhou S, Kari A (2016) Super-resolution image reconstruction method using homotopy regularization. Multimed Tools Appl 75(23):15993–16016

    Google Scholar 

  50. Xu L, Zheng S, Jia J (2013) Unnatural L0 sparse representation for natural image deblurring. IEEE Conference on Computer Vision and Pattern Recognition:1107–1114

  51. Yan C, Li L, Zhang C, Liu B, Zhang Y, Dai Q (2019) Cross-modality bridging and knowledge transferring for image understanding. IEEE Transactions on Multimedia

  52. Yan C, Tu Y, Wang X, Zhang Y, Hao X, Zhang Y, Dai Q (2019) STAT: spatial-temporal attention mechanism for video captioning. IEEE Transactions on Multimedia

  53. Yan C, Xie H, Chen J, Zha Z, Zhang Y, Dai Q (2018) A fast Uyghur text detector for complex background images. IEEE Transactions on Multimedia 20(12):3389–3398

    Google Scholar 

  54. Yang Z, Jia D, Loannidis S, Sheng B (2018) Intermediate data caching optimization for multi-stage and parallel big data frameworks. IEEE 11th international conference on CLOUD computing (CLOUD), pp. 277–284

  55. Yang J, Wright J, Huang T-S, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    MathSciNet  MATH  Google Scholar 

  56. Zhang H, Tang L, Fang Z, Xiang C, Li C (2018) Nonconvex and nonsmooth total generalized variation model for image restoration. Signal Process:69–85

    Google Scholar 

  57. Zuo Z, Yang W, Lan X, Liu L, Hu J, Yan L (2014) Adaptive nonconvex nonsmooth regularization for image restoration based on spatial information. Circuits, Systems, and Signal Processing 33(8):2549–2564

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China under Grant No. 61561019, and the Doctoral Scientific Fund Project of Hubei University for Nationalities under Grant No. MY2015B001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Tang, L. A nonconvex and nonsmooth anisotropic total variation model for image noise and blur removal. Multimed Tools Appl 79, 1445–1473 (2020). https://doi.org/10.1007/s11042-019-08179-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08179-8

Keywords

Navigation