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Digital camera identification based on analysis
of optical defects

Jarosław Bernacki1

Abstract
In this paper we deal with the problem of digital camera identification by photographs.
Identifying camera is possible by analyzing camera’s sensor artifacts that occur during the
process of photo processing. The problem of digital camera identification has been popular
for a long time. Recently many effective and robust algorithms for solving this problem
have been proposed. However, almost all solutions are based on state-of-the-art algorithm,
proposed by Lukás et al. in 2006. Core of this algorithm is to calculate the so-called sensor
pattern noise based on denoising images with wavelet-based denoising filter. Such technique
is very efficient, but very time consuming. In this paper we consider tracing cameras by
analyzing defects of their optical systems, like vignetting and lens distortion. We show that
analysis of vignetting defect allows for recognizing brand of the camera. Lens distortion can
be used to distinguish images from different cameras. Experimental evaluation was carried
out on 60 devices (compact cameras and smartphones) for a total number of 12 051 images,
with support of the Dresden Image Database. Proposed methods do not require denoising
images with wavelet-based denoising filter what has a significant influence for speed of
image processing, compared with state-of-the-art algorithm.

Keywords Hardwaremetry · Camera recognition · Sensor identification · Photo response
non uniformity · Distortion · Vignetting · Privacy · Digital forensics

1 Introduction

The popularity of photography is obvious. Lots of people take photos with their smartphones
or cameras and immediately share them in social media. It is clear that tracing cameras
may expose users’ privacy to a serious threat. Problem of tracing digital cameras has been
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popular for a long time. Tracing a camera is understood as a recognition of camera’s sen-
sor. In [11] process of searching for characteristic features for identifying the camera is
called hardwaremetry. According to [13, 31] each camera leaves some specific and unique
traits in the images that makes it possible to trace the camera and could serve as a “camera
fingerprint”. Such fingerprint is most often understood as pixel artifacts resulting of sen-
sor imperfections or defects of optics. One of the classic and state-of-the-art algorithms for
camera recognition was presented by Lukás et al. in [31]. For each camera it is determined
the so-called sensor pattern noise that acts as an unique camera fingerprint. This sensor pat-
tern noise is calculated by averaging noise obtained from multiple camera’s images using a
denoise filter. According to the authors, efficiency of the algorithm depends on denoising
filter used for processing the images and experimental evaluation showed that wavelet-based
denoising filter achieves best results. Such approach is very effective and the recognition of
the camera is at very high level. However, using the wavelet-based denoising filter is very
time consuming [30]. Typical time for denoising 12 megapixel photo takes about two min-
utes; time for denoising 24 megapixel photo takes three to even four minutes. It is clear that
this issue makes usage of this approach for large sets of images impractical. Therefore, there
is a motivation to consider methods that will be even less accurate, but much faster.

In this paper we discuss quite different approach in order to recognize the camera. We are
not considering afore mentioned noise that can be extracted from images but typical defects
of optical system, like lens distortion and vignetting.

Vignetting is a kind of fault that occurs due to optical defects or sensor imperfections [10,
34]. It reveals as a reduction of image brightness at the edges of the image. Therefore,
vignetted images have visually darker corners than rest of an image. Such defect is popular
in lots of digital cameras (especially compacts and digital single lens reflectives). Types of
vignetting are precisely described in [10]. This topic has attracted many researchers, there-
fore a lot of algorithms [6, 22–24] and patents [27] for vignetting correction are developed.
Lens distortion is a deviation from rectilinear projection [5, 32]. This phenomenon causes
straight lines in the picture to become curved. It is seen in the images as differences in
magnification of the image depending on its distance from the optical axis [14].

We analyze these defects in order to recognize camera’s brand. The goal is to reduce
the time for processing the image in comparison to Lukás et al.’s method. To the best of
our knowledge, nobody before has tried to use vignetting or lens distortion for tracing the
camera.

1.1 Contribution

Contribution of this paper is twofold. First, we analyze the vignetting defect in order to
identify brand of the camera. We examine reduction of photo brightness at the edges of a
set of images with the same frame perspective. We experimentally show that there are some
tendences of underexposed areas in the image edges that might be helpful to recognize
camera’s brand or even camera’s model. Secondly, we show that analyzing image distortion
can also be used for distinguish two cameras. Proposed observations are less efficient in
camera’s brand recognition compared with Lukás et al.’s algorithm [31] but significantly
faster, what makes it practical to use them for processing large sets of images.

1.2 Organization of the paper

The paper is organized as follows. In Section 2 related and previous work is described.
Section 3 describes the analysis of vignetting and lens distortion. In Section 4 experimental
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evaluation is presented. Final section concludes this work and points some future research
directions.

2 Related and previous work

The issue of tracing cameras is studied in various ways. One of the most popular and consid-
ered as state-of-the-art work on camera sensor recognition is Lukás et al.’s algorithm [31].
This algorithm is in detail described in Appendix. Authors proposed an algorithm for calcu-
lating camera’s fingerprint which is based on a difference between image p and its denoised
form F(p).

In [2] we have proposed a fast method for camera tracing based on Peak signal-to-noise
ratio. Method is very fast in comparison with [31], however classification efficiency is
lower.

In [1] authors proposed using the k-means algorithm for managing photo response non-
uniformity (PRNU) patterns. Patterns are compared to each other using correlation and
grouped by k-means algorithm. Therefore, similar patterns grouped over a cluster are con-
sidered as belonging to the same camera. Experiments were conducted for a database of
500 images. Images grouped within a cluster were with true positive rate (TPR) of 98%
belonging to the particular camera. The idea of fingerprint clustering is also presented in [3].

In [20] analysis of JPEG compression is carried out. It is well-known that JPEG lossy
compression generates a noise that impacts groups of pixels. However, authors show JPEG
compression adds some specific artifacts to the final image and the exact implementation
details may be used for identification.

In [17] an approach of counterfeiting characteristic features of the camera in order to
produce an image “pretending” to be done by another camera is presented. The technique
is described as photo-response nonuniformity fingeprint-copy attack. The goal is to obfus-
cate sensor pattern noise of a particular camera by “inserting” into it a sensor pattern
noise of another camera. It is showed that this can be done by performing simple alge-
braic operations. Let us assume that K̂N is a camera fingerprint calculated of N images
and J is a fingerprint of another camera whose we want to put into K̂N . Then we have
J ′ = J (1 + αK̂N), where α > 0 is a scalar defining fingerprint strength. Experimental
results show that such “exchange” of camera fingerprints is very efficient, i.e. based on
K̂N we can produce a counterfeit photo J ′ pretending that camera. Nearly the same propo-
sition is described in [35, 41]. This technique has a serious disadvantage, beacuse it may
be impractical. It is required to have a representative image set of camera that we want to
“exchange” a fingerprint with and affects the actual image (i.e., the stored information).
Due to denoising images, this method is also very time consuming.

In [4, 26, 29] dead pixels, pixels traps, point/hot point defects and cluster defects were
investigated in terms of camera recognition. Experimental results show that different cam-
eras have a distinct pattern of defective pixels, hence in some cases, hot and dead pixels
allow recognizing the sensor.

In [21] a similar method as in [31] is presented. A sensor fingerprint is considered as a
white noise present on the images. Authors suggest using correlation to circular correlation
standard as a test statistic, which may reduce false positive rate (FPR) of camera recognition.
However in contrast to [31], authors examine proposed method on fragments of photos
instead of “full” photos. The true positive rate of recognition was 95% (fragments of size
256x256px) and 99% (512x512px).
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In [13] a technique based on cross-correlation analysis and peak-to-correlation-energy
(PCE) ratio to identify the camera is proposed. Sensor pattern noise is calculated and the
correlation detector with PCE ratio to measure the similarity between noise residuals is
used. However, time performance is not examined.

In [18] a method for camera identification using correlation is presented. Authors
consider existing database with different cameras’ fingerprints and calculate correlation
coefficient of a fingerprint of a new camera for comparison. This approach is clearly based
on Lukás et al.’s algorithm, moreover authors do not describe, how database of fingerprints
is gained.

In [39, 40] a gradient technique for vignetting correction is described. It is also pointed
that vignetting can be described by natural image statistics. In [23–25] polynomial models
for vignetting correction are proposed.

In [32] two methods for calculating lens distortion in order to camera calibration are
presented. First method is based on look-up-tables (LUT) of focal length and lens distortion.
Second method uses relationships between some feature points found in image. Calculation
of lens distortion is done by algebraic operations.

Work [28] presents a method for camera calibration and radial distortion correction.
Radial distortion can be calculated by two distorted images. Advantage of this method is
that no knowledge about camera’s intristic paramters nor scene structure is required.

In [42] an innovative technique using Game Theory approach for identifying digital cam-
era is discussed. The aim is to detect fingerprint-copy attack, when an adversary uses copy of
original camera’s fingerprint. Therefore, this problem is represented as an interplay between
sensor-based camera identification and the fingerprint-copy attack. A Bayesian game is used
for analyzing differences between original camera’s fingerprint and the fingerprint-copy.
The Nash equilibrium is used to evaluate the efficacy of proposed method.

In [33] there is proposed an approach for identifying a camera with the use of enhanced
Poissonian-Gaussian model. This model describes distribution of pixels in a RAW image.
Cameras’ fingerprints are represented as parameters of a statistical noise of considered
model. Experiments are conducted with Dresden Image Database and also authors’ own
image set.

In [37] problem of image splicing is considered. It is assumed that image splicing can
be detected by analyzing noise level in spliced parts. It turns that splicing parts have differ-
ent level of noise, what causes noise inconsistencies between them. This in turn allow for
detecting the activity of splicing. A noise level function (NLF) is used. Experimental eval-
uation confirms efficacy of the NLF estimation. Work [37] is an extension of [33], where
inconsistencies of images spliced regions are examined. Due to limitations of standard solu-
tion for estimating noise variance of each region, authors propose to use scoring strategy.
An image is divided into small patches and the noise variance is calculated by kurtosis
concentration-based pixel-level noise estimation method. Then, a sample of the noise vari-
ance and a inhomogeneity score of each region is fitted by a linear function. Experimental
results confirmed efficacy of proposed method.

In [38] the problem of managing a large database of camera fingerprints is considered.
Cameras’ fingerprints are represented as matrices of the noise whose resolution is equal
to camera’s produced image size. A brute-force searching a specified fingerprint in a large
database of N fingerprints takes O(nN), where n is the number of pixels in each fingerprint.
Therefore, the goal is to reduce this time. In considered paper a fast search algorithm is
proposed. Algorithm extracts a digest of the query fingerprint of the 10,000 fingerprint
values and approximately matches their positions with positions of pixels in the digests of
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Fig. 1 Example of image of a plain surface. The pixel intensity in the middle of the image is 94; average
pixel intensities in corners a1, a2, a3, a4 are respectively: 74, 72, 84, 85

all database fingerprints. In the worst case, the complexity of this algorithm still could be
the same as the database size, but in practice it is much faster. Experiments showed that
for two-megapixel fingerprints searching takes 0.2 of second. However, this approach has
some serious limitations. Nowadays, cameras’ image sensors are much bigger than two-
megapixels therefore search time will again increase. Secondly, this approach deals with
searching the existing set of cameras’ fingerprints, Therefore it is required to have such
fingerprint set. This is still not practical due to big sizes of recent cameras sensors, where for
example for 24-megapixel sensor, the fingerprint still must be a matrix with a corresponding
size.

In [16] a method for camera identification is discussed. Calculating camera’s fingerprint
is in the similar spirit as in [31]. Evaluation is made using the Peak to Correlation Energy
ratio (PCE). Experiments are very representative, images are utilized from the popular on-
line image sharing site Flickr. Tests included more than million images of 6896 cameras
covering 150 models. In [15] the same problem is solved by using support vector machines
(SVM) with decision fusion techniques.

3 Analysis of vignetting and lens distortion

In this section we consider artifacts of vignetting and lens distortion in order to recognize
camera’s brand. In both cases an image is represented according to the RGB model as
M×N by 3 data array that defines red, green and blue color components for each individual
pixel.

3.1 Vignetting-CT algorithm

As mentioned in the Introduction, vignetting is a defect depending on reduction of brigth-
ness at the image frame, usually in its corners. The easiest way to observe the presence of
vignetting is a photo of plain surface (Fig. 1).

We propose a procedure called Vignetting-Camera Tracing (Vignetting-CT) for calculat-
ing the differences of pixel intensities in image corners (Algorithm 1 ).
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Vignetting-CT algorithm is very simple and comes to divide an image into four “small”
parts at its corners and to calculate mean values of pixel intensities expressed in RGB
notation. This algorithm can be performed for any color channel, but we propose to process
red (R) color channel (line 1). Next step is median filtering of this channel (line 2) and
calculating the residuum S defined as an absolute difference of the color channel and its
median-filtered form (line 3). The δ parameter defines size of image parts that are to be
analyzed (lines 4, 5). We propose to use δ = 0.05. Then, mean values of pixel intensities in
image corners are calculated (lines 6-9). Finally, we compute mean value of pixel intenisties
d̂ in corners of residuum S (line 10). We propose the d̂ value to use as a fingerprint for
recognizing camera’s brand. Sample division of image frame is presented in Fig. 1.

Worth noticing that operating on S reveals the vignetting even, if image is not blank.
We have inspected in detail pixel intensities of residuum S and it turns that in most images
average pixel intensity of whole S is brighter than for considered corners. Sample image is
presented in Fig. 2. Sample values for some photos from Nikon D70s (1) are presented in
Table 1.

We propose to use median filter instead of wavelet-based denoising filter that is mainly
used for denoising images [18, 21, 31]. Median filtering is noticeably faster than wavelet-
based denoising. Vignetting-CT algorithm is computationally effective, its complexity is
O(mn), where m and n define the size of image parts for calculating pixel intensities. Due
to small values of m and n, calculations are carried out very quickly.

3.2 Lens distortion

Distortion is a kind of defect of changing geometry of the image transmitted by lens to cam-
era’s photosensitive sensor, especially closer to the corners and edges of the image frame.
Essential for calculating distortion is the use of calibration grid which consists of crossing
vertical and horizontal lines [5]. Such grid is used to compare it with lines in the image.
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Fig. 2 Sample image and its residuum S calculated as absolute difference of an image and its median-filtered
version. Average value of pixel intensities in S is 0.6, intensities in corners in S: ˆsa1 = 0.36, ˆsa2 = 0.49,
ˆsa3 = 0.34, ˆsa4 = 0.54

If the lines in the image cover with the grid, there is no distortion in the photo. Otherwise,
there is a barrel or pincushion distortion. Barrel distortion appears when image magnifica-
tion decreases with distance from the optical axis. It often appears in pictures taken with
wide-angle lenses. Image elements look as they were bent outside the image. Similarly, in
pincushion distortion image magnification increases with distance to the optical axis. An
image seems to be squeezed inside the center of the frame. A sample photo with visible
barrel distortion is presented in Fig. 3.

Table 1 Sample vignetting values for Nikon D70s (1) in residuum S

Image Average pixel intensities in S ˆsa1 ˆsa2 ˆsa3 ˆsa4

1.jpg 0.59 0.34 0.32 0.40 0.41

2.jpg 0.69 0.44 0.43 0.46 0.45

3.jpg 0.31 0.22 0.18 0.24 0.15

4.jpg 0.28 0.23 0.24 0.24 0.26

5.jpg 0.45 0.25 0.29 0.41 0.28

6.jpg 0.45 0.15 0.09 0.27 0.40

7.jpg 0.34 0.19 0.19 0.25 0.15

8.jpg 0.47 0.22 0.19 0.23 0.28

9.jpg 0.24 0.23 0.23 0.22 0.22

10.jpg 0.31 0.20 0.26 0.21 0.19

11.jpg 0.40 0.30 0.31 0.33 0.35

12.jpg 0.36 0.27 0.26 0.27 0.26

13.jpg 0.65 0.46 0.38 0.58 0.55

14.jpg 0.54 0.38 0.37 0.39 0.41

The closer to 0, the darker area in the image
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Fig. 3 Image with distortion and
the grid of horizontal and vertical
lines. Red lines denote distorted
points

In literature there are many models that describe lens distortion. Most common are poly-
nomial models [7, 14]. We propose a model defined as (1). This model is a simplified
version of Brown’s model [7].

pu = pd(1 + kr2) (1)

where:

– pu(xu, yu) – undistorted image point;
– pd(xd, yd) – distorted image point;
– k – distortion parameter;
– r = √

(xd − xu)2 + (yd − yu)2.

We propose to calculate the distortion parameter k for a set of images of different cameras
and check if there are some tendences that might be helpful to be used in order to recognize
a specific camera. The pu and pd can be determined by using software (for example Hugin
Photo Stitcher [19]) or manually. Knowing distorted and undistorted points, this procedure
leads for solving (1), where k is unknown. Of course, for a set of distorted and corresponding
undistorted points there will be the same number of k values that might be different. In such
case we propose to average of all k values.

Let us consider a simple toy example in which we show the reasoning of calculating the
value of distortion.

Example 1 (Toy example) Suppose that we have coordinates of the following set of dis-
torted pd and corresponding undistorted pu points:
pd1 = (100, 80), pu1 = (110, 90)

pd2 = (210, 100), pu2 = (200, 110)

pd3 = (215, 177), pu3 = (217, 184)
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We calculate r1, r2 and r3.
r1 = √

(xd1 − xu1)
2 + (yd1 − yu1)

2 = √
(100 − 110)2 + (80 − 90)2 = 14.14

Similarly, r2 = 14.14 and r3 = 7.28
Inserting into (1) and calculating the k values for pd1 and pu1 :
100 = 110(1 + k · 14.14)

k1(1) = −0.09
80 = 90(1 + k · 14.14)

k1(2) = 0.07
Similarly, for next pair of points pd2 , pu2 and pd3 , pu3

k2 = −0.003 and 0.007; k3 = 0.001 and −0.005
Finally, we calculate the mean value of all k values:
k = −0.09+0.07+(−0.003)+0.007+0.001+(−0.005)

6 = −0.003
Thus, the k = −0.003 is the searched parameter.

Above procedure should be performed for all images separately. We propose to consider
the k parameter as unique that might be used to distinguish cameras. Due to simplicity,
proposed procedure is fast and can be easily implemented.

4 Experimental verification

In this section we compare results of recognizing cameras’ brands by analyzing d̂ value
of Vignetting-CT and k distortion parameter with Lukás et al.’s algorithm [31] in terms of
efficiency of classification and time performance. Details of Lukás et al.’s algorithm are
recalled in the Appendix. For evaluation of this algorithm, we use original authors’ MATLAB
implementation [30]. Both Vignetting-CT algorithm and script for calculating distortion
parameter k are implemented in MATLAB.

We use the accuracy (ACC), defined in the standard way as an evaluation statistic:

ACC = TP + TN

TP + TN + FP + FN
,

where TP/TN denotes “true positive/true negative”; FP/FN stands for “false positive/false
negative”. TP denotes number of cases correctly classified to a specific class; TN are
instances that are correctly rejected. FP denotes cases incorrectly classified to the specific
class; FN are cases incorrectly rejected.

4.1 Devices

Experiments are conducted on two datasets. First dataset contains images from popular
smartphones (further called “smartphones dataset”). We have used 264 JPEG images from
12 smartphones. Used smartphones include: Apple iPhone 6, Asus ZenFone 2, HTC One
M9, Huawei P8, LG G3, LG G4, Lumia 1020, Lumia 1520, Samsung Galaxy Note 4, Sam-
sung Galaxy S6, Sony Xperia Z3 and Sony Xperia Z3+. All devices contain CMOS sensors.
Second dataset include images from the Dresden Image Database [9]. This database consists
of tens of thousands images made by different cameras and is often used for research [8,
12]. We have used 11787 JPEG images of 48 cameras. Used cameras include: Agfa DC
733s, Agfa DC 830i, Agfa Sensor 505, Agfa Sensor 530s, Canon Ixus 55, Canon Ixus 70
(3 devices), Casio EX Z150 (5 devices), Kodak M1063 (5 devices), Nikon CoolPix S710 (5
devices), Nikon D70 (2 devices), Nikon D70s (2 devices), Nikon D200 (2 devices), Olympus

Multimedia Tools and Applications (2020) 79:2945–2963 2953



Table 2 Confusion matrix of model recognition, Vignetting-CT, smartphones dataset, ACC = 0.62

A1 A2 H1 H2 L1 L2 L3 L4 S1 S2 S3 S4

Apple iPhone 6 A1 69.2 * * * 7.7 * * * * 15.4 7.7 *

Asus ZenFone 2 A2 * 75.0 * * 25.0 * * * * * * *

HTC One M9 H1 * * 75.0 * * * * * * * 25.0 *

Huawei P8 H2 * * * 60.0 * 20.0 * 6.7 * 13.3 * *

LG G3 L1 * * 12.5 12.5 37.5 * 25.0 * * * 12.5 *

LG G4 L2 * * * * 12.5 62.5 * * 25.0 * * *

Lumia 1020 L3 * 12.5 * * * * 50.0 25.0 * 12.5 * *

Lumia 1520 L4 * * * * * * 50.0 50.0 * * * *

Samsung Note 4 S1 * * * 16.7 * * * * 66.7 16.7 * *

Samsung S6 S2 * * * * * * 4.5 * 13.6 72.7 * *

Sony Xperia Z3 S3 * * * 14.3 * * * * * * 71.4 *

Sony Xperia Z3+ S4 * * * 11.1 * 11.1 * * * * 22.2 55.6

The symbol * represents values smaller than 5%

1050SW (5 devices), Praktica DCZ5 (5 devices), Rollei RCP 7325XS (3 devices), Sam-
sung L74 (3 devices) and Samsung NV15 (3 devices). In most cases, images were taken
of the same image frames by different devices. All cameras in this dataset contain CCD
sensors. In cases of both datasets all images are JPEG lossy compressed and come directly
from cameras. We do not assume further processing of images, for example user’s graphic
processing.

4.2 Experiment I – brand identification by analyzing vignetting

We analyze influcence of underexposed areas in the corners of images for recognizing the
camera. Experiments are performed in the following way. The d̂ value is calculated for
every image from each camera and mean value of d̂ of images from a specific camera is
calculated. To classify a new image K , its d̂K is calculated. Obtained result is assigned to
the closest mean d̂ from a specific camera and assumed as taken by this camera.

For smartphones dataset the d̂ value has been calculated for 22 images per device. Results
of classification are presented in Tables 2, 3, 4, 5.

Table 3 Confusion matrix of brand recognition, Vignetting-CT, smartphones dataset, ACC = 0.72

A1 A2 H1 H2 L1 L2 S1 S2

Apple A1 69.2 * * * 7.7 * 15.4 7.7

Asus A2 * 75.0 * * 25.0 * * *

HTC H1 * * 75.0 * * * * 25.0

Huawei H2 * * * 60.0 20.0 6.7 13.3 *

LG L1 * * 6.3 6.3 56.3 12.5 12.5 6.3

Lumia L2 * 10.0 * * * 80.0 10.0 *

Samsung S1 * * * * * * 85.7 *

Sony S2 * * * 12.5 6.3 * 6.3 75.0

The symbol * represents values smaller than 5%
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Table 4 Confusion matrix of model recognition, Lukás et al.’s algorithm, smartphones dataset, ACC = 0.84

A1 A2 H1 H2 L1 L2 L3 L4 S1 S2 S3 S4

Apple iPhone 6 A1 81.0 * * * * * * * * * * *

Asus ZenFone 2 A2 * 90.0 * * * * * * * * * *

HTC One M9 H1 * * 85.0 * * * * 6.0 * * * *

Huawei P8 H2 * * * 87.0 * * * * * * * *

LG G3 L1 * * * * 88.0 * * * * * * *

LG G4 L2 * * * * * 90.0 * * * * * *

Lumia 1020 L3 * * * * * * 80.0 * * * * *

Lumia 1520 L4 * 8.0 * * 7.0 * * 77.0 * * 7.0 *

Samsung Note 4 S1 * * * * * * * * 82.0 * * *

Samsung S6 S2 * * * 6.0 * * * * * 85.0 * 7.0

Sony Xperia Z3 S3 * * * * * * * * * * 85.0 *

Sony Xperia Z3+ S4 * 6.0 * * * 6.0 * * 7.0 * * 81.0

The symbol * represents values smaller than 5%

For Dresden Image Database the d̂ value has been calculated for at least 180 images per
device. Results of brand classification are presented in Tables 6 and 7. For the clarity, we do
not present results for model classification, due to the amount of 48 cameras.

Results presented in confusion matrices point that camera’s brand classification is notice-
ably higher for Lukás et al.’s algorithm. In cases of two tested datasets the accuracy of brand
classification is 84% for smartphones dataset and 83% for Dresden Image Database. Effi-
ciency of Vignetting-CT algorithm is 72% for smartphones dataset and 52% for Dresden
Image Database. Advantage of Lukás et al.’s algorithm is classification “stability”, what is
especially visible in confusion matrices of brand recognition.

It is worth saying that Lukás et al.’s algorithm achieves better performance in case of
older devices with CCD sensors. In [2] it was shown that performance of this algorithm
is lower for newer cameras with CMOS sensors. Nowadays, recent cameras have CMOS
sensors instead of CCDs.

Table 5 Confusion matrix of brand recognition, Lukás et al.’s algorithm, smartphones dataset, ACC = 0.84

A1 A2 H1 H2 L1 L2 S1 S2

Apple A1 81.0 * * * * * * *

Asus A2 * 90.0 * * * * * *

HTC H1 * * 85.0 * * * * *

Huawei H2 * * * 87.0 * * * *

LG L1 * * * * 89.0 * * *

Lumia L2 * * * * * 78.5 * *

Samsung S1 * * * * * * 83.5 *

Sony S2 * * * * * * * 83.0

The symbol * represents values smaller than 5%
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Table 6 Confusion matrix of brand recognition, Vignetting-CT, Dresden Image Database, ACC = 0.52

Ag C1 C2 Ko Ni Ol Pr Ro Sa

Agfa Ag 70.0 * * * 5.0 * * * 25.0

Canon C1 * 60.0 * * 5.0 * 15.0 15.0 5.0

Casio C1 4.0 4.0 48.0 * * * * 24.0 20.0

Kodak Ko 4.0 * 8.0 40.0 28.0 12.0 * 4.0 4.0

Nikon Ni 3.6 3.6 1.8 3.6 52.7 * * 1.8 32.7

Olympus Ol 12.0 8.0 8.0 4.0 16.0 40.0 * * 12.0

Praktica Pr 8.0 * 12.0 8.0 4.0 * 28.0 * 40.0

Rollei Ro * * 13.3 * 6.7 * 6.7 40.0 33.3

Samsung Sa * * * * 6.7 * * * 93.3

The symbol * represents values smaller than 5%

4.3 Time performance

Data presented in Table 8 and Fig. 4 clearly indicate that Lukás et al.’s algorithm is defeated
in terms of time of image processing. Vignetting-CT algorithm processes images in real
time, while Lukás et al.’s takes at average about 90 seconds to process a single image.
Of course, image processing time is dependent on the image resolution. Lower resolution
images (e.g. 6 megapixels 3000x2000px) are processed with less than 1 minute, however, 24
megapixels images of resolution 6000x4000px are processed about 4 minutes. To sum up,
the whole time for processing 12051 images took less than 40 minutes in case of Vignetting-
CT algorithm and about 294 hours for Lukás et al.’s algorithm. Such poor time performance
excludes usage of Lukás’ algorithm for a mass acale. In [36] it was examined if the image
processing time Lukás’ algorithm could be decreased by processing small fragments of
images. For this purpose 50×50 pixels fragments of photos were used, however the results
of classification were not satisfactory.

The experiments were conducted on MSI GV62-7RD notebook with quad-core Intel
Core i5-7300HQ processor with 24GB of RAM. It is worth mentioning that camera’s fin-
gerprint in Lukás et al.’s algorithm is stored as a matrix of size of camera’s images. Authors’

Table 7 Confusion matrix of brand recognition, Lukás et al., Dresden Image Database, ACC = 0.83

Ag C1 C2 Ko Ni Ol Pr Ro Sa

Agfa Ag 90.0 * * * * * * 6.0 *

Canon C1 * 77.0 * * * * 9.0 * 7.0

Casio C1 6.0 * 77.0 * * 13.0 * * *

Kodak Ko * 7.0 * 82.0 * * * * 8.0

Nikon Ni * * * * 81.0 * * * *

Olympus Ol * * * * * 79.0 * * *

Praktica Pr * 7.0 * * * * 87.0 * *

Rollei Ro * 8.0 * * 10.0 * * 79.0 *

Samsung Sa * * * * 6.0 * * * 92.0

The symbol * represents values smaller than 5%
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Table 8 Processing time of
smartphones dataset and Dresden
Image Database (12051 photos in
total)

Algorithm Overall Average (per one photo)

Vignetting-CT 39 minutes 0.2 seconds

Lukás 294 hours 90 seconds

implementation produces the fingerprint files as MATLAB *.mat files which are usually of
weight at least 110 megabytes. It means that calculated fingerprints for two used datasets of
over 12 thousand of images weigh about 1.2 terabyte.

4.4 Experiment II – comparison of lens distortion

We analyze lens distortion parameter k for images from different devices but for the same
image frames. Script for calculating k parameter was written in MATLAB, but it can also
be used the Hugin Photo Stitcher software [19] that measures the distortion. We have com-
pared distortion results from MATLAB script with Hugin software and obtained results are
the same. Analysis shows that despite photographing the same scene, distortion parameter
appears to be different for various devices. Sample results are presented in Figs. 5 and 6. It
is worth mentioning that different devices of the same camera model give different values
of k parameter. Such example is presented in Fig. 5, where the same image frame of two
different smartphones (Huawei P8 and Samsung S6) generates different distortion parame-
ters. A similar situation is presented in Fig. 6, for two different devices of Nikon CoolPix
S710 (Dresden Image Database).

Sample results of k distortion parameter are presented in Tables 9 and 10. Due to large
number of devices and images, we present for the clarity only part of full results. It is visi-
ble that all photos taken by various devices have different distortion parameters. Therefore
proposed approach gives information if a set of images was done by one or more cam-
eras, however it can not be used to determine of what model or even brand was used. What
is more, an advantage of proposed method is its speed, because distortion parameter k is

Fig. 4 Comparison of time performance of Lukás et al.’s algorithm and Vignetting-CT for all images (12051)
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Fig. 5 Lens distortion of images of the same frame, smartphones dataset. Image (1) (Huawei P8), distortion
parameter k = −0.6782; image (2) (Samsung S6), distortion parameter k = −0.2

calculated in real time. Moreover, there are many applications that calculate and correct lens
distortion in photos, thus there is no need to implement distortion algorithm manually. Of
course proposed method can be useful in simple cases of comparing similar photos, how-
ever it may not be practical for sets of different images. One of the reason is that distortion
parameter changes due to distance to the object, angle of view and focal length.

4.5 Summary

We have analyzed influence of vignetting and lens distortion defects to the problem of
digital camera recognition. Experiments show that analysis of vignetting can be used for
brand recognition. Compared to Lukás et al.’s algorithm, model recognition is lower, how-
ever Vignetting-CT algorithm beats Lukás et al.’s algorithm in terms of speed. Efficiency of
brand recognition on smartphones dataset and Dresden Image Database is 72% and 52%,
respectively, while Lukás et al.’s algorithm achieves 84% and 83%. However, an advantage
of Vignetting-CT algorithm is processing images in real time, while Lukás et al. takes at
average about 90 seconds per photo. Therefore, the Lukás et al.’s algorithm needed more

Fig. 6 Lens distortion of images of the same frame, Dresden Image Database. Image (1) (Nikon CoolPix
S710 (device #2)), distortion parameter k = −0.10323; image (2) (Nikon CoolPix S710 (device #0)),
distortion parameter k = −0.01799
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Table 9 Sample values of k lens
distortion parameter of the same
image frame for different sample
devices, smartphones dataset

Image Apple iPhone 6 Lumia 1020 Samsung S6

1.jpg 0.266 −0.001 0.000

2.jpg −0.027 0.077 −0.060

3.jpg 0.026 0.039 0.000

4.jpg 0.001 0.006 0.028

5.jpg 0.000 −0.056 −0.002

6.jpg 0.008 −0.013 0.032

7.jpg 0.000 0.001 0.006

8.jpg −0.027 0.235 −0.042

9.jpg −0.027 −0.030 −0.060

10.jpg −0.001 −0.002 −0.017

11.jpg −0.187 0.001 −0.060

12.jpg −0.529 0.037 −0.012

13.jpg −0.027 −0.082 −0.060

14.jpg 0.008 0.014 −0.060

than 290 hours to calculate cameras fingerprints, what excludes this algorithm of usage for
a mass scale.

We have also experimentally shown that analysis of lens distortion can be useful to distin-
guish if a set of images of the same frame was taken by the same camera. Photos of the same
frame but made with various cameras generate different distortion parameters. Of course,
such approach may be not practical for camera recognition in case of images of different
frames, however it can be useful for analysis of similar photos. The main disadvantage of
distortion is its heterogenity. Distortion changes due to distance to the object, focal length

Table 10 Sample values of k lens
distortion parameter of the same
image frame for different sample
devices, Dresden Image Database

Canon IXUS 70 Nikon D70

Image (0) (1) (2) (0) (1)

85.jpg −0.002 −0.001 −0.012 −0.15 −0.23

86.jpg −0.006 −0.034 −0.091 0.01 −0.07

87.jpg −0.590 −0.119 0.001 −0.23 −0.361

88.jpg 0.17 0.42 0.207 −0.003 0.001

89.jpg 0.053 0.02 0.081 0.19 0.019

90.jpg −0.05 −0.061 −0.018 −0.024 −0.039

91.jpg 0.634 0.52 0.784 0.499 0.506

92.jpg 0.501 0.222 0.36 0.91 0.68

93.jpg −0005 −0.04 −0.081 −0.2 −0.09

94.jpg −0.62 −0.89 −0.7 −0.023 −0.601

95.jpg −0.94 −0.88 −0.95 −0.55 −0.598

96.jpg 0.04 0.077 0.901 −0.004 −0.02

97.jpg −0.001 0.004 −0.095 0.17 0.05

98.jpg −0.062 −0.181 −0.56 −0.34 −0.21Used three models of Canon
IXUS 70 and two of Nikon D70

Multimedia Tools and Applications (2020) 79:2945–2963 2959



or angle of view, therefore there is probably no possibility to propose reasonable model that
could be used for tracing cameras for a mass scale. Another limitation is that if there are no
straight lines in the picture, distortion can not be determined.

5 Conclusion and future work

In this paper the problem of recognizing digital cameras by photographs was examined.
Most popular solutions are based on denoising images with wavelet-based denoising filter
and calculating so-called sensor pattern noise which averaged gives camera’s fingerprint.
We have proposed a novel approach for tracing digital cameras by analysis of vignetting and
distortion defects. We have compared obtained results with state-of-the-art Lukás et al.’s
algorithm. Experiments have shown that despite lower efficiency it is possible to recognize
brand of the camera by analysis of vignetting defect. Our approach defeats the Lukás et al.’s
algorithm in terms of image processing time. Proposed Vignetting-CT algorithm processes
images in real time, while Lukás et al.’s algorithm needs at average 90 seconds to calcu-
late the sensor pattern noise of one photograph. Moreover, Vignetting-CT algorithm does
not require calculating cameras’ fingerprints what is very time consuming. Analysis of dis-
tortion showed that images of different devices (also of the same model) generate different
distortion parameters. Therefore, there is a possibility to distinguish if photos were taken by
the same camera. This method is useful for a set of similar images and is very fast as well
calculating distortion parameter is performed in real time.

Future works will concern further experiments with lens distortion analysis. It should be
examined if it is possible to propose a model of distortion that could be used for reliable and
more universal camera recognition. It would even be interesting to check if other optical
defects like chromatic or spherical aberration would be useful to trace the camera’s brand.
Moreover, we are going to check efficiency of Vignetting-CT algorithm with classifiers
based on Deep Learning or Convolutional Neural Networks approaches.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Lukás et al.’s algorithm

Lukás et al. in [31] proposed an algorithm for identifying digital camera by produced
images. This algorithm extracts a specific pattern called the photo-response nonunifor-
mity noise (PRNU) which serves as a unique camera’s identification fingerprint. Algorithm
extracts noise from input image P by using a denoising filter F . Then, camera’s fingerprint
is calculated as C = P − F(P ).

Input: Image P in RGB of size M × N ;
Output: Matrix C of noise residual, size M × N .

1. Calculate K = PR+PG+PB
3 ;

2. Denoise all channels of input image PR, PG , PB with filter F ;
3. Calculate mean D = F(PR)+F(PG )+F(PB)

3 ;
4. Calculate matrix of noise residual: C = K − D.
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where PR, PG and PB are matrices of each component of RGB model of input P ; F is the
denoising filter. For denoising, authors propose using the wavelet-based denoising filter.

Authors suggest to use at least 45 images from each camera to calculate the PRNUs
for each image and then average obtained PRNUs, what as a result will give camera’s
fingerprint.
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