Skip to main content
Log in

RoleVR: Multi-experience in immersive virtual reality between co-located HMD and non-HMD users

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this study, we present RoleVR, which can provide a similar high level of presence and multi experience for co-located head-mounted display (HMD) and Non-HMD users in an asymmetric virtual reality (VR) environment. The core of RoleVR is distinguishing the difference between the asymmetric environments (in terms of the system and the experience) of HMD and Non-HMD users to design optimized roles for these users. Here, we assign HMD user with spatial role that maximizes the sense of space based on three-dimensional visual information, and we assign Non-HMD user with temporal role in which they take control of communication and action, and understand the overall situation according to the flow of time. We also design an interaction for walking and a hand interface to enhance presence. This is achieved by understanding the user’s role, thereby improving the immersion. Finally, we created an asymmetric VR application that considers the interaction between roles and performed survey-based experiments to verify the basic presence and multi-experience of users in RoleVR. Through this process, we confirmed that RoleVR provides satisfactory presence for co-located HMD and Non-HMD users, and a variety of experiences specialized for each role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bacim F, Ragan ED, Stinson C, Scerbo S, Bowman DA (2012) Collaborative navigation in virtual search and rescue. In: 2012 IEEE Symposium on 3d user interfaces (3DUI), pp 187–188. https://doi.org/10.1109/3DUI.2012.6184224

  2. Carlsson C, Hagsand O (1993) Dive a multi-user virtual reality system. In: Proceedings of IEEE Virtual Reality Annual International Symposium, pp 394–400. https://doi.org/10.1109/VRAIS.1993.380753

  3. Carvalheiro C, Nóbrega R, da Silva H, Rodrigues R (2016) User redirection and direct haptics in virtual environments. In: Proceedings of the 2016 ACM on Multimedia Conference, MM ’16. ACM, New York, pp 1146–1155. https://doi.org/10.1145/2964284.2964293

  4. Cheng LP, Roumen T, Rantzsch H, Köhler S, Schmidt P, Kovacs R, Jasper J, Kemper J, Baudisch P (2015) Turkdeck: Physical virtual reality based on people. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software &Technology, UIST ’15. ACM, New York, pp 417–426. https://doi.org/10.1145/2807442.2807463

  5. Churchill EF, Snowdon D (1998) Collaborative virtual environments: an introductory review of issues and systems. Virtual Real 3(1):3–15. https://doi.org/10.1007/BF01409793

    Article  Google Scholar 

  6. Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The cave: Audio visual experience automatic virtual environment. Commun ACM 35 (6):64–72. https://doi.org/10.1145/129888.129892

    Article  Google Scholar 

  7. Duval T, Fleury C (2009) An asymmetric 2d pointer/3d ray for 3d interaction within collaborative virtual environments. In: Proceedings of the 14th International Conference on 3D Web Technology, Web3D ’09. ACM, New York, pp 33–41. https://doi.org/10.1145/1559764.1559769

  8. Foreign-VR: Ruckus ridge vr party. Game [HTC Vive] (2016). http://store.steampowered.com/app/443800/Ruckus_Ridge_VR_Party/

  9. Gugenheimer J, Stemasov E, Frommel J, Rukzio E (2017) Sharevr: Enabling co-located experiences for virtual reality between hmd and non-hmd users. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17. ACM, New York, pp 4021–4033. https://doi.org/10.1145/3025453.3025683

  10. Gugenheimer J, Stemasov E, Sareen H, Rukzio E (2017) Facedisplay: Enabling multi-user interaction for mobile virtual reality. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’17. ACM, New York, pp 369–372. https://doi.org/10.1145/3027063.3052962

  11. Han S, Kim J (2017) A study on immersion of hand interaction for mobile platform virtual reality contents. Symmetry 9(2):22. https://doi.org/10.3390/sym9020022. http://www.mdpi.com/2073-8994/9/2/22

    Article  Google Scholar 

  12. Ibayashi H, Sugiura Y, Sakamoto D, Miyata N, Tada M, Okuma T, Kurata T, Mochimaru M, Igarashi T (2015) Dollhouse vr: a multi-view, multi-user collaborative design workspace with vr technology. In: SIGGRAPH Asia 2015 emerging technologies, SA ’15, pp 8:1–8:2. ACM, New York. https://doi.org/10.1145/2818466.2818480

  13. Ijsselsteijn WA, de Kort YAW, Poels K (2013) The Game Experience Questionnaire:Development of a self-report measure to assess the psychological impact of digital games. Manuscript in Preparation Technische Universiteit Eindhoven

  14. Jeong K, Lee J, Kim J (2018) A study on new virtual reality system in maze terrain. Int J Human–Comput Interact 34(2):129–145. https://doi.org/10.1080/10447318.2017.1331535

    Article  Google Scholar 

  15. Johansen R (1988) Groupware: Computer Support for Business Teams. The Free Press, New York

  16. Kim M, Lee J, Kim C, Kim J (2018) Tpvr: User interaction of third person virtual reality for new presence and experience. Symmetry 10(4):109. https://doi.org/10.3390/sym10040109. http://www.mdpi.com/2073-8994/10/4/109

    Article  Google Scholar 

  17. Knibbe J, Schjerlund J, Petraeus M, Hornbæk K (2018) The dream is collapsing: The experience of exiting vr. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18. ACM, New York, pp 483:1–483:13. https://doi.org/10.1145/3173574.3174057

  18. Kokkinara E, Kilteni K, Blom KJ, Slater M (2016) First person perspective of seated participants over a walking virtual body leads to illusory agency over the walking. Scientific Reports 6(28879):1–11. https://doi.org/10.1038/srep28879

    Google Scholar 

  19. Law ELC, Brühlmann F, Mekler ED (2018) Systematic review and validation of the game experience questionnaire (geq) - implications for citation and reporting practice. In: Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’18. ACM, New York, pp 257–270. https://doi.org/10.1145/3242671.3242683

  20. Lee J, Jeong K, Kim J (2017) Mave: Maze-based immersive virtual environment for new presence and experience, vol 28. https://doi.org/10.1002/cav.1756.E1756cav.1756

  21. Lee J, Kim M, Kim J (2017) A study on immersion and vr sickness in walking interaction for immersive virtual reality applications, vol 9. https://doi.org/10.3390/sym9050078. http://www.mdpi.com/2073-8994/9/5/78

  22. Li H, Trutoiu L, Olszewski K, Wei L, Trutna T, Hsieh PL, Nicholls A, Ma C (2015) Facial performance sensing head-mounted display. ACM Trans Graph 34(4):47:1–47:9. https://doi.org/10.1145/2766939

    Article  Google Scholar 

  23. MacKenzie IS (2013) Human-computer Interaction: An Empirical Research Perspective, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  24. Notelaers S, De Weyer T, Goorts P, Maesen S, Vanacken L, Coninx K, Bekaert P (2012) Heatmeup: a 3dui serious game to explore collaborative wayfinding. In: 2012 IEEE Symposium on 3d user interfaces (3DUI), pp 177–178. https://doi.org/10.1109/3DUI.2012.6184219

  25. Oda O, Elvezio C, Sukan M, Feiner S, Tversky B (2015) Virtual replicas for remote assistance in virtual and augmented reality. In: Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, UIST ’15. ACM, New York, pp 405–415. https://doi.org/10.1145/2807442.2807497

  26. Otto O, Roberts D, Wolff R (2006) A review on effective closely-coupled collaboration using immersive cve’s. In: Proceedings of the 2006 ACM International Conference on Virtual Reality Continuum and Its Applications, VRCIA ’06. ACM, New York, pp 145–154. https://doi.org/10.1145/1128923.1128947

  27. Sajjadi P, Cebolledo Gutierrez EO, Trullemans S, De Troyer O (2014) Maze commander: a collaborative asynchronous game using the oculus rift & the sifteo cubes. In: Proceedings of the First ACM SIGCHI Annual Symposium on Computer-human Interaction in Play, CHI PLAY ’14. ACM, New York, pp 227–236. https://doi.org/10.1145/2658537.2658690

  28. Schissler C, Nicholls A, Mehra R (2016) Efficient hrtf-based spatial audio for area and volumetric sources. IEEE Trans Vis Comput Graph 22(4):1356–1366. https://doi.org/10.1109/TVCG.2016.2518134

    Article  Google Scholar 

  29. Sidorakis N, Koulieris GA, Mania K (2015) Binocular eye-tracking for the control of a 3d immersive multimedia user interface. In: 2015 IEEE 1St workshop on everyday virtual reality (WEVR), pp 15–18. https://doi.org/10.1109/WEVR.2015.7151689

  30. Slater M, Sanchez-Vives MV (2014) Transcending the self in immersive virtual reality. Computer 47(7):24–30. https://doi.org/10.1109/MC.2014.198

    Article  Google Scholar 

  31. Slater M, Sanchez-Vives MV (2016) Enhancing our lives with immersive virtual reality. Front Robot AI 3:74. https://doi.org/10.3389/frobt.2016.00074

    Google Scholar 

  32. Slater M, Usoh M, Steed A (1995) Taking steps: The influence of a walking technique on presence in virtual reality. ACM Trans Comput-Hum Interact 2(3):201–219. https://doi.org/10.1145/210079.210084

    Article  Google Scholar 

  33. Stafford A, Piekarski W, Thomas B (2006) Implementation of god-like interaction techniques for supporting collaboration between outdoor ar and indoor tabletop users. In: Proceedings of the 5th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR ’06. IEEE Computer Society, Washington, pp 165–172. https://doi.org/10.1109/ISMAR.2006.297809

  34. Team-Future: Black hat cooperative. Game [HTC Vive] (2016). http://store.steampowered.com/app/503100/Black_Hat_Cooperative/

  35. Vasylevska K, Kaufmann H, Bolas M, Suma EA (2013) Flexible spaces: Dynamic layout generation for infinite walking in virtual environments. In: 2013 IEEE Symposium on 3d user interfaces. IEEE Computer Society, Washington, pp 39–42. https://doi.org/10.1109/3DUI.2013.6550194

  36. Vinayagamoorthy V, Garau M, Steed A, Slater M (2004) An eye gaze model for dyadic interaction in an immersive virtual environment: Practice and experience. Comput Graph Forum 23(1):1–11. https://doi.org/10.1111/j.1467-8659.2004.00001.x

    Article  Google Scholar 

  37. Violante MG, Vezzetti E (2014) Implementing a new approach for the design of an e-learning platform in engineering education. Comput Appl Eng Educ 22(4):708–727. https://doi.org/10.1002/cae.21564

    Article  Google Scholar 

  38. Voida A, Greenberg S (2009) Wii all play: The console game as a computational meeting place. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09. ACM, New York, pp 1559–1568. https://doi.org/10.1145/1518701.1518940

  39. Witmer BG, Jerome CJ, Singer MJ (2005) The factor structure of the presence questionnaire. Presence: Teleoper Virtual Environ 14(3):298–312. https://doi.org/10.1162/105474605323384654

    Article  Google Scholar 

  40. Zhao W, Chai J, Xu YQ (2012) Combining marker-based mocap and rgb-d camera for acquiring high-fidelity hand motion data. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’12. Eurographics Association, Aire-la-Ville, pp 33–42. http://dl.acm.org/citation.cfm?id=2422356.2422363

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(No. NRF-2017R1D1A1B03030286)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmo Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kim, M. & Kim, J. RoleVR: Multi-experience in immersive virtual reality between co-located HMD and non-HMD users. Multimed Tools Appl 79, 979–1005 (2020). https://doi.org/10.1007/s11042-019-08220-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08220-w

Keywords

Navigation