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Abstract High Efficiency Video Coding (HEVC) is currently the latest video
coding standard available on the market, and it is able to offer up to twice the
coding efficiency, in the range of 50% bitrate reduction for the same video qual-
ity, of the previous standard, namely H.264/Advanced Video Coding (AVC).
HEVC was standardized in 2013 for videos up to a resolution of 2K. However,
the popularity of 4K videos is increasing due to the growing use of video-on-
demand platforms. Therefore, the ITU-T Video Coding Expert Group (VCEG)
and the ISO/IEC Moving Picture Expert Group (MPEG) created the Joint
Video Exploration Team (JVET) in 2015 to design the future video coding
technology under the Joint Exploration Model (JEM), which its latest version
achieves an improvement in coding efficiency of 30%, but at a high cost in
terms of computational complexity (10×) with respect to HEVC. The new
video standard is expected to be ready in 2020, so it is necessary to find ef-
ficient mechanisms to convert current content to the new format adopted in
JEM. In this regard, our proposal consists in a probabilistic classifier based on
Näıve-Bayes that enables the prediction of the splitting decision at the first
quadtree level in JEM, reducing the computational complexity of the transcod-
ing process from HEVC to this new standard. The experimental results show
a good trade-off between coding efficiency and complexity compared with the
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anchor transcoder, obtaining a time reduction up to 12.71% at the expense of
low coding efficiency penalties in the configurations evaluated.

Keywords HEVC · H.265 · JEM · Transcoding · CTU Splitting

1 Introduction

Among all the fields of industry, the multimedia sector is one of the most
demanded ones. In fact, the consumption of multimedia contents has grown
exponentially in the past few years. Nowadays, 70% of total Internet traffic
is video traffic, and it is forecasted to reach 82% in 2020 [1]. Year after year,
users are demanding higher video qualities, larger resolutions and new formats
in order to enrich their viewing experience. In this scenario, video coding
standards play a critical role in managing the huge bandwidth and storage
requirements of these contents, as well as in regulating all these emerging
formats.

H.265/High Efficiency Video Coding (HEVC) [2] was developed in 2013
by the Joint Collaborative Team on Video Coding (JCT-VC) to replace the
H.264/Advanced Video Coding (AVC) standard [3], which has been the most
widely used codec in recent years in many applications, such as broadcasting,
multimedia, streaming and telephony systems. HEVC roughly doubles the
compression performance of H.264/AVC, especially for high definition (HD)
and ultra-high definition (UHD) content, but at a cost of extremely high com-
putational complexities in the video encoding process [4].

In spite of the superior performance of HEVC, the most recent user de-
mands introduce new challenges that require even more efficient compression
techniques. With this in mind, the international organizations ITU-T, through
the Video Coding Expert Group (VCEG), and ISO/IEC, through the Mov-
ing Picture Expert Group (MPEG), have jointly created a new collaboration
framework under the name of Joint Video Exploration Team (JVET) to an-
alyze the potential need for the standardization of future video coding tech-
nologies with a compression capability that significantly surpasses the one
achieved by HEVC, especially for streaming UHD, panorama video content
from sports events, concerts, shows, 360◦ omnidirectional immersive multime-
dia and high-dynamic-range (HDR) video content. Since the creation of the
JVET, the most promising future technologies explored have been integrated
into the Joint Exploration Test Model (JEM) [5].

JEM has been the experimental software of the JVET, and contains cod-
ing tools that have been designed to achieve a coding performance superior to
that of HEVC. The latest version of JEM achieves an improvement in coding
efficiency of nearly 30% with respect to HEVC, but at the cost of an ex-
tremely high computational complexity (10×). For this reason, it is necessary
to develop more efficient compression techniques. The official standardization
activities for the next video coding standard beyond HEVC started in April
2018 after evaluating the submissions to the Call for Proposals (CfP) for fu-
ture video coding technologies [6]. The next video coding standard is currently
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expected to be finalized by the end of 2020, and will be named the Versatile
Video Coding (VVC) standard [7]. The new standard is estimated to enable
the delivery of UHD services at bitrates that today are used to carry HD tele-
vision signals. In addition, VVC will enable twice as much video content to be
stored on a server or be sent via a streaming service.

In this scenario, in which multiple standards coexist, video transcoding has
come a long way. Video transcoding is the term used to refer to the digital
conversion of data. The process of video transcoding is normally a two-step
process. The first part of the process is decoding, in which the original data is
converted to an uncompressed format. The second part is re-encoding, whereby
the data is transformed to the format used by the destination device, usually
different from the original one. The need for transcoding originated from the
rapid change in digital media and the increasing demand for new video formats.

Considering both the superior compression performance expected from
JEM and the large amount of existing content that is currently encoded us-
ing the HEVC standard, a transcoder that converts bitstreams from HEVC
to JEM will be of great value to many applications, taking advantage of the
superior performance offered by JEM to provide interoperability between the
HEVC standard and the format of the future video compression standard.
Furthermore, HEVC encoders are widely available on the market and provide
a good trade-off in terms of rate-distortion (RD) and cost. Hence, providing a
cost-effective encoding method is mandatory to address the issue of the lack
of dedicated JEM encoders. The union of an HEVC encoder with an efficient
HEVC-to-JEM transcoder might be the solution to this problem, offering the
benefits of the superior RD performance of the JEM standard while giving
the new JEM-compliant devices the possibility of processing contents encoded
with JEM.

However, all the new coding tools integrated into JEM involve a consider-
able increase in terms of encoding time. Among them, one of the tools that
contributes most to the improved coding efficiency of JEM is its new parti-
tioning scheme. This scheme features a maximum block size of 128×128 pixels,
while in HEVC the maximum size is 64×64 pixels. Therefore, there is no di-
rect relationship between a block of 128×128 pixels in JEM and any block
in HEVC. For this reason, this work introduces a probabilistic model based
on the Näıve-Bayes (NB) algorithm to analyze statistical information of the
source stream with the aim of accelerating the splitting decision of 128×128
pixel blocks. As a result, the computational complexity involved in the conver-
sion of contents from HEVC to JEM is reduced. The experimental results show
that the proposed algorithm, compared with the anchor transcoder in the con-
figurations evaluated, can achieve time reductions of up to 12.71% on average
over the full set of the JEM common test sequences, with a penalty lower than
1.35% in terms of the Bjøntegaard delta rate (BD-rate) [8], which measures
the increment in bitrate while maintaining the same objective quality.

This paper is organized as follows. Section 3 highlights key features of
the JEM coding design, focusing on the partitioning structure. Section 2 in-
cludes relevant related work. The proposed model is described in Section 4,
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and an analysis of the results of both the model and the implementation of
the proposal on the JEM reference software is presented in Section 5. Finally,
Section 6 concludes the paper.

2 Related Work

The conversion of video content between standards (heterogeneous transcod-
ing) has been studied in some depth in recent years. The simplest transcoding
process performs the complete process of decoding and fully re-encoding [9],
but this is not time effective. The proposals available in the literature try to
avoid unnecessary operations at the encoding stage, or even to accelerate com-
plex modules by using information collected in the decoding process as part
of the transcoder. In this section, several works in the literature that focus
directly on video transcoding between standards will be analyzed.

A proposal focused on MPEG-2/H.264 heterogeneous transcoding is pre-
sented by Fernandez-Escribano et al. in [10]. It describes a decision algorithm
for the prediction in P frames at the macroblock (MB) level using machine
learning techniques. Using these techniques, decision trees are constructed to
classify the information of the MPEG-2 MBs in one of the H.264 coding modes.
The proposed algorithm only requires the average and variance of the residue
in MPEG-2 in order to implement a simple decision tree based on the quanti-
zation paramenter (QP) value selected in the encoding stage in H.264/AVC.
The results show that the proposed algorithm is able to maintain a good pic-
ture quality while reducing the computational complexity by as much as 95%,
with a negligible impact on the quality of the transcoded video.

In 2012, regarding H.264/HEVC heterogeneous transcoding, Peixoto and
Izquierdo [11] proposed the reuse of motion vectors as well as a similarity met-
ric to decide which coding unit (CU) partitions should be tested for HEVC.
This proposal obtains a maximum speed-up of 4.13× with a BD-rate penalty
of up to 10.92%. One year later, Peixoto et al. [12] proposed two alternatives
to map H.264/AVC MBs into HEVC CUs based on a machine learning (ML)
model: one of them is an off-line model and the other uses an on-line training
stage. An extension of these two works was published in [13], in which the
first k frames of the sequence are used to compute the parameters, so that
the transcoder can learn the mapping for that particular sequence. Then, two
different types of mode mapping algorithms are proposed. In the first solu-
tion, a single H.264/AVC coding parameter is used to determine the outgoing
HEVC partitions using dynamic thresholding. The second solution uses linear
discriminant functions to map the incoming H.264/AVC coding parameters to
the outgoing HEVC partitions. The first solution obtains a trade-off between
the speed-up and bitrate increase of 3.08× and 16.2%, respectively.

Jiang et al. [14] proposed a transcoder algorithm based on region feature
analysis in 2014. The main idea consists in dividing each frame into three
regions in terms of coding tree units (CTUs) on the basis of the correlation
between image complexity and the coding bits of the H.264/AVC source bit-
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stream. The results obtained in terms of speed-up and BD-rate are 1.93× and
1.73% on average, respectively.

In [15], a complete transcoding algorithm between the standards H.264/AVC
and HEVC is presented by Diaz-Honrubia et al. in 2016. The probabilistic
model developed in this proposal is based on Näıve-Bayes for each level of
partitioning (64×64 and 32×32) and temporal layer, making a total of 8 mod-
els. In addition, each model is constructed with the information of 26 variables
extracted from the decoder of H.264/AVC. These variables are calculated for
1000 instances for each of the 4 sequences trained and QP values (22, 27,
32, and 37). The full implementation of the transcoding algorithm achieves
a quantitative speed-up of around 2.31× on average, with a time reduction
of 56.7% and a BD-rate penalty of around 3.4%, compared with the anchor
transcoder.

Finally, J.-F. Franche and S. Coulombe proposed a fast H.264/HEVC
transcoder composed of a motion propagation algorithm and a fast mode de-
cision framework [16]. The motion propagation algorithm creates a motion
vector candidate list at CTU level, and then selects the best candidate at pre-
diction unit (PU) level. This method avoids computational redundancy by pre-
computing the prediction error of each candidate at CTU level, and by reusing
the information for various partition sizes. The fast mode decision framework
is based on a post-order traversal of the CTU, which includes several mode
reduction techniques. Moreover, a novel method exploits the data provided by
the motion propagation algorithm to determine whether a CU has to be split.
Compared with a cascaded pixel-domain transcoding approach, this solution
is on average 8.5× faster using one reference frame with a 2.63% BD-rate
penalty. For a configuration with four reference frames, the average speed-up
is 11.77× and the penalty is 3.82% BD-rate.

In this paper, we present a first soft computing approach to video transcod-
ing between HEVC and JEM. To date, there are no known proposals that in-
volve the conversion of contents from HEVC to JEM, so a new line of research
is opened in the field of heterogeneous video transcoders.

3 Technical Background

As mentioned above, JEM is the new test model software under study by the
JVET group, and it has been built on top of the HEVC test model (HM) [17].
The basic encoding and decoding flowchart of HEVC is kept unchanged in
JEM. However, the design elements of the most important modules, such as
the modules of block structure, intra and inter prediction, residue transform
and loop filter, are modified and new coding tools are added. This section
includes some technical background to the new standard, describing the most
important features of the said modules [18].

In HEVC, the image partitioning is defined by CTUs, with a maximum
size of 64×64 pixels, that are split into CUs by using a quadtree structure
to adapt to various local characteristics. The decision whether to code a pic-
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Fig. 1 Example of a QTBT structure.

ture area using inter-picture (temporal) or intra-picture (spatial) prediction
is made at the CU level. Each CU can contain one or more PUs, according
to the PU splitting type, and transform units (TUs), according to another
quadtree structure similar to the coding tree for the CU. In JEM, this concept
of multiple partition types, including CU, PU and TU, is no longer needed
with the incorporation of the quadtree plus binary tree (QTBT) structure for
blocks [19, 20]. This provides more flexibility for CU partition shapes to better
match the local characteristics of the video sequence.

In this block structure, CTUs have a maximum size of 256×256 pixels, al-
though this is limited to 128×128 pixels in JEM. Each CTU is first partitioned
by a quadtree structure into square CUs. Then, leaf nodes can be further par-
titioned by a binary tree structure. By the use of this tree, each CU can be
split into horizontal and vertical CUs. An example of a CTU structure with
its associated QTBT in JEM is depicted in Figure 1. First, the CTU is split
into four blocks of equal size by the use of a quadtree, and once the leaf nodes
are reached, the binary tree begins the horizontal and vertical divisions.

For intra prediction, in order to capture finer edge directions present in
natural videos, the directional intra modes are extended from 33, as defined
in HEVC, to 65. The Planar and DC modes remain the same. These new
directional prediction modes are applied for all block sizes, in both luma and
chroma components. The additional directional modes are depicted as blue
arrows in Figure 2, where the existing HEVC modes are shown with black
arrows. Other additional intra features include cross-component linear model
(CCLM) and new interpolation filters.

Regarding inter prediction, with QTBT a new concept of sub-CU appears,
and this comes from the technique used to improve the motion information by
splitting a large CU into sub-CUs and deriving motion information for all the
sub-CUs of the large CU. Each sub-CU contains motion information, which
can be obtained using either the alternative temporal motion vector prediction
(ATMVP) or the spatial-temporal motion vector prediction (STMVP) tech-
niques. Additionally, the accuracy for the internal motion vector storage and
the Merge candidate increases to 1/16 samples. Moreover, JEM incorporates
the overlapped block motion compensation (OBMC) technique, which had al-
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Fig. 2 Intra prediction modes in JEM.

ready been implemented in previous standards. Finally, JEM also includes
certain frame-rate up conversion (FRUC) techniques, which allows to derive
motion information on the decoder side.

Regarding the modifications to the transform, JEM incorporates some new
functions, and an adaptive multiple transform (AMT) that allows the encoder
to choose among a large set of transform functions to encode the intra and
inter CU residual information.

As far as the in-loop filtering is concerned, in addition to the deblocking
filter and the sample adaptive offset (SAO) operation applied in HEVC, JEM
introduces two new filters, namely the bilateral filter and the adaptive loop
filter (ALF). The bilateral filter is the first loop filter in the decoding process,
just after a block is reconstructed. ALF, in turn, is applied last, following a
block-based filter adaption approach.

4 Proposed HEVC-JEM Transcoding Model

The transcoding approach proposed in this paper uses a probabilistic model
that helps the transcoder make the decision of splitting the CU block under
study at the first depth level of the quadtree included in the QTBT. The
decoding information in HEVC will be exploited in a model based on Näıve-
Bayes classifiers in order to assist the quadtree decision on CU splitting in
JEM, at the 128×128 pixel level. The use of this kind of classifiers is due
to their flexibility, simplicity and strong independence assumption: all input
features are conditionally independent between them given the class in the
generation of the output decision.

4.1 Description of the Proposal

By the use of a knowledge discovery from data (KDD) process [21], some use-
ful information in the form of statistics about the HEVC video stream can be
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Fig. 3 Encoding process of the proposal in the JEM encoder.

obtained in its decoder. Then, this information is preprocessed and later pro-
cessed using ML techniques to convert it into a mathematical model that can
be executed in the on-line transcoding process. In other words, our proposal
replaces the brute force scheme used in the implementation of JEM with a
low-complexity algorithm based on a NB classifier. This approach is based on
the idea that there is no direct relationship between a CU of 128×128 pixels
in JEM and any block in HEVC (maximum size of 64×64 pixels). Therefore,
our motivation is to analyze statistical information from the input frames, di-
viding them into blocks of 128×128 pixels, and to create a decision model that
saves computing time by deciding whether to split or not the 128×128 blocks
in JEM.

The model created from this information is incorporated into the coding
flow of the JEM encoder, where the encoding process has been modified to
integrate the proposal into the QTBT structure. The new coding process is
shown in Figure 3. This diagram shows the effect of integrating the model into
the coding process, achieving a reduction in coding time regardless of whether
the partitioning decision is to split the first level (128×128 pixels) or not. On
the one hand, if the decision of the model is to split, the encoder saves the
computation time of the first level, in both QT and BT, dividing the block
into 4 CUs of 64×64 pixels each. On the other hand, if the model decides not
to split the block in the first level, the encoder saves the computation time of
checking the QT and BT of lower levels, since it only evaluates the QT and
BT of the first level.

To design the model, the steps described in the following subsections were
carried out, such as choosing the sequences to extract the input information,
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Fig. 4 SI and TI of the test sequences. Classes: A (Red), B (Yellow), C (Green), D (Black)
and E (Purple).

selecting the variables that will be obtained from these sequences, and gener-
ating the model with the WEKA software [22].

4.2 Selection of Sequences

The JVET group issued a document with information about the video se-
quences that should be used in the evaluation of proposals implemented on
JEM, as well as the reference configuration that should be used in the encod-
ing process [23]. On the basis of this document, the criterion for choosing the
sequences from which the information will be extracted consisted in select-
ing one sequence per class (corresponding to different resolutions) based on
its spatial index (SI) and temporal index (TI), according to the ITU-T P.910
recommendation [24].

The SI index and the TI index were obtained for all the test sequences. A
graphical distribution of these indices is shown in Figure 4. In order to cover
a wide range of distinctive features, the selected sequences were: Campfire
(Class A), Kimono (Class B), BQMall (Class C), BQSquare (Class D) and
KristenAndSara (Class E).

4.3 Variables and Statistical Information Analyzed

For the development of the decision model based on HEVC information, a
large number of variables were selected that could define the behavior of the
quadtree at the 128×128 pixel level. Later, during the feature selection process,
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some of them will be discarded if considered redundant or irrelevant for the
model.

This set of information was obtained in complete blocks of size 128×128
in the available B frames of each of the selected sequences mentioned in the
previous section, for the QP values 22, 27, 32 and 37. Each feature is described
by its general expression, and the nomenclature V1-V16 is used to represent
the variables for the corresponding block in the residual frame and in the
reconstructed image, depending on the information that is being calculated.
Thus, the initial set of features contains the following variables:

– Average of the block (X): average of the samples in the 128×128 residual
block (V1). The following expression shows the calculation of X, where P
is the residue value of each sample and N is the total of samples contained
in a block of size 128x128:

x =

∑N
i=1 Pi

N

– Variance of the block (σ2): variance of the samples in the 128×128 block,
both in the residual frame (V2) and in the reconstructed image (V9).

σ2 =

∑N
i=1 (Pi − x)

2

N

– Variance of the means in sub-blocks: the 128×128 residual block is divided
into 4 blocks of size 64×64. The mean of the residual values of each 64×64
is calculated, and then the variance of these means (V3).

– Variance of the variances in sub-blocks: the 128×128 residual block is di-
vided into 4 blocks of size 64×64. The variance of the residual values of
each 64×64 block is calculated, and then the variance of these variances
(V4).

– Fisher coefficient of skewness (γ): this coefficient allows the evaluation of
the skewness of a set of values based on their distribution around the
average. This statistic has been calculated for the 128×128 block in both
the residual frame (V5) and the reconstructed image (V7).

γ =

∑N
i=1(Pi −X)3

N · σ3

– Mean absolute deviation (MAD): this makes it possible to obtain the vari-
ation in a set of values by calculating the average distance between each
value and the average. This statistic has been calculated for the 128×128
block in both the residual frame (V6) and the reconstructed image (V8).

MAD =

∑N
i=1 |Pi − x|

N

– Number of zero values: number of zero values in the 128×128 block of the
residue (V10).
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– Coefficient of Kurtosis (β): this measures how values are grouped around
the average, so that greater kurtosis implies a higher concentration of values
close to the average. This statistic has been calculated for the 128×128
block in both the residual frame (V11) and the reconstructed image (V12).

β =

∑N
i=1 (Pi − x)

4

N · σ4
− 3

– Spatial index of the 128×128 block, obtained only in the reconstructed
image (V13), using the Sobel Filter (SF ), which is the convolution (∗) of
the Sobel matrices as indicated bellow, with a 3×3 matrix, Ap, surrounding
the pixel to which the filter is being applied). This can indicate whether it
is a block with many details or, on the contrary, that it is a homogeneous
region. The spatial index (SI) is calculated as the standard deviation of
the value of the pixels contained in the 128×128 size block after applying
the SF .

SFx =

−1 0 1
−2 0 2
−1 0 1

 ∗Ap SFy =

−1 −2 −1
0 0 0
1 2 1

 ∗Ap

SFp =
√
SF 2

x + SF 2
y SI = σ(SFi)

– Cost in bits to encode the block in the compressed HEVC stream (V14).
– Number of pixels in the frame (width × height) of the sequence to which

the 128×128 block belongs (V15).
– Lambda value used to encode the frame (V16). This depends on the QP

value and the position of the frame within the GOP pattern.

The variables described above were calculated for the sequences selected
in the previous section. These sequences were previously encoded and later
decoded with version 16.16 of HM [17], and using the reference coding param-
eters described in the document of common evaluation conditions [23].

4.4 Learning the Model in WEKA

After the previous step, we have the information of all the 128×128 blocks
available in the B frames of the selected sequences for each QP. First of all,
the types of all variables are assigned (e.g., categorical, integer, real, etc.).
Then, due to the different resolution and number of frames of the sequences,
the criterion of selecting up to 1000 instances per temporal layer, sequence
and QP has been adopted to form the train set (what leaves the 98.61% of
the samples for the test set), avoiding an overfit to the information of blocks
belonging to higher resolution sequences. In addition, the class attribute is
defined for each instance in the training set, which represents the value that the
model should predict from the statistics and variables defined in the previous
section. This attribute indicates whether or not the block of size 128×128 is
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Fig. 5 Data processing and model generation with WEKA.

split into 4 blocks of size 64×64, and it has been obtained by encoding and
decoding the sequences in JEM 7.1 [5].

Once the dataset is ready, the process of creating and learning the prob-
abilistic model starts with WEKA [22] as shown in Figure 5, which is a tool
developed in Java that supports the most popular data mining algorithms and
tasks, such as clustering, regression and visualization.

To measure the performance of the model at the different stages described
below, the accuracy metric is used, which represents the total percentage of
correctly classified instances:

Accuracy (%) =
True positives + True negatives

Total number of instances
· 100

The accuracy obtained by using a 10-fold cross validation on the training
set with the Näıve-Bayes classifier before any preprocessing is only 79.54%.
Therefore, the first step carried out in WEKA is the preprocessing of data
through the discretization of variables. Most of the features are continuous
quantitative variables, which forces us to assume that they follow a specific
distribution when working with probabilistic models. The discretization of
variables allows the generation of a new dataset in which the variables become
categorical, whereby the information is grouped in intervals with similar in-
formation. The supervised discretization algorithm generates a set of intervals
for each variable, these having a different rank depending on the information
with which each interval contributes to the class [25]. Once the variables are
discretized, the accuracy of the model including all statistics is increased to
88.85%.

Probabilistic classifiers in general, and those based on Näıve-Bayes in par-
ticular, are quite sensitive to the feature set used to induce the classifier. Thus,
the presence in the training set of irrelevant or redundant variables may sig-
nificantly affect the precision of the learned classifier. Because of this, a subset
selection process is carried out in which the variables that truly provide infor-
mation about the class are determined, i.e. the irrelevant variables that do not
improve the accuracy of the model are removed. The subset selection method
performed was Wrapper with forward selection [26]. Forward selection is an
iterative method in which the model is initialized empty. In each iteration, the
feature which best improves the model is included. This process is repeated
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Table 1 Accuracy results of the wrapper algorithm used in the training phase.

Accuracy of the set after including a new variable (%)
Variable {∅} {V14} {V14, V9} {V14, V9, V16} {V14, V9, V16, V15}

+V1 87.76 89.22 90.04 89.81 90.13
+V2 88.72 89.71 90.28 90.14 90.51
+V3 87.02 89.12 90.08 89.89 90.22
+V4 88.78 89.78 90.35 90.19 90.52
+V5 88.58 89.83 90.49 90.20 90.54
+V6 88.67 89.69 90.20 90.07 90.40
+V7 63.84 91.38 91.24 91.56 91.72
+V8 71.14 91.56 90.80 91.48 91.53
+V9 71.20 91.62 - - -
+V10 88.93 90.10 90.57 90.45 90.74
+V11 58.04 90.06 90.55 90.41 90.71
+V12 64.54 91.43 91.25 91.59 91.71
+V13 58.78 91.47 90.98 91.36 91.54
+V14 91.48 - - - -
+V15 66.02 91.59 91.52 91.94 -
+V16 69.24 91.06 91.64 - -

until an addition of a new variable does not improve its performance. In our
case, this performance (score) is measured with the NB classifier. Considering
this method evaluates only a few subsets of variables, it is computationally
efficient and robust against overfitting.

As can be seen in Table 1, the wrapper algorithm is performed until the
fifth iteration, in which none of the remaining variables are able to improve the
accuracy of the current set. The resulting dataset of each iteration is evaluated
with the NB classifier with a 10-fold cross-validation. This classifier is based
on the idea that an event occurs after other events that have an influence on
it, but these events are independent of each other once the class is known.
Mathematically this is expressed as the factorization by the probability of the
class multiplied by the probability of each variable given the class, i.e. given
a class Y and a set of variables {X1, . . . , XN}, the following expression is
satisfied:

P (Y |X1, . . . , XN ) ∝ P (Y ) · P (X1|Y ) . . . P (XN |Y )

As a result of evaluating the classifier in WEKA (82952 instances in total),
an accuracy of 91.94% was obtained with the four features comprised by the
model: cost in bits to encode the block (V14), variance of the block of size
128×128 of the reconstructed image (V9), lambda value (V16) and the number
of pixels of the frame (V15). At first glance, it is possible to say that our model
achieves a high accuracy. To verify this, the following section details the results
obtained after analyzing the model with a large number of instances (test set)
through a multitude of evaluation datasets in a real scenario.
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5 Performance Evaluation

In this section the results of both the model and the implementation of the
proposal in JEM are presented. For this purpose, the metrics necessary to
perform the evaluation of the algorithm will be defined.

5.1 Evaluation of the Model

An exhaustive analysis has been carried out with the aim of evaluating the
effectiveness of the generated model using the Random Access configuration.
This analysis includes a test set for each sequence (from classes A1, A2, B, C,
D, and E) and QP (22, 27, 32, and 37), making a total of 96 test sets, each of
which contains an instance per complete block of size 128×128 pixels available
in the sequence (note that the instances that were used to learn the model do
not belong to these test sets). The decision obtained by the model for each
block is compared with the original decision made by the JEM encoder for
those same blocks. Consequently, it was necessary to decode each sequence
in JEM to store the decisions made by the reference encoder at the 128×128
level. The said sequences, which are described in [23], are classified as follows:

– Class A1 (3840×2160 pixels): Tango2, Drums100, Campfire and Toddler-
Fountain2.

– Class A2 (3840×2160 pixels): CatRobot, TrafficFlow, DaylightRoad2 and
Rollercoaster2.

– Class B (1920×1080 pixels): Kimono, ParkScene, Cactus, BQTerrace and
BasketballDrive.

– Class C (832×480 pixels): RaceHorsesC, BQMall, PartyScene and Basket-
ballDrill.

– Class D (416×240 pixels): RaceHorses, BQSquare, BlowingBubbles and
BasketballPass.

– Class E (1280×720 pixels): FourPeople, Johnny and KristenAndSara.

Table 2 shows the accuracies reported by the model generated for each
sequence and QP. As a result, it can be observed that a high accuracy is
achieved in all cases, and slightly higher for QP 22, regardless of the class
evaluated. In total, 5,987,832 instances were tested, with an average accuracy
of 90.07%.

5.2 Simulation Process and Metrics

Our proposal has been evaluated in accordance with the conditions contained
within the document of common conditions mentioned above [23], in which
test conditions are set out to homogenize comparisons between experiments.
Specifically, the QP values tested are 22, 27, 32 and 37, and the configura-
tions are Random Access (RA), Low Delay B (LB) and Low Delay P (LP),
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Table 2 Accuracy of the proposed model.

Class Sequence
Accuracy (%)

QP 22 QP 27 QP 32 QP 37

A1

Tango2 87.28 86.62 86.45 86.15
Drums100 96.05 88.09 89.21 88.98
Campfire 95.34 90.40 91.97 91.52
ToddlerFountain2 99.05 97.53 96.47 89.43

A2

CatRobot 87.03 88.47 89.98 91.29
TrafficFlow 85.59 85.80 90.36 94.49
DaylightRoad2 90.82 85.51 86.77 88.45
Rollercoaster2 89.54 85.38 86.43 85.87

B

Kimono 91.83 90.11 89.66 89.73
ParkScene 93.41 85.89 89.15 91.69
Cactus 91.96 88.34 87.92 89.85
BasketballDrive 92.76 87.99 90.17 89.62
BQTerrace 97.43 84.40 85.47 93.00

C

BasketballDrill 96.98 91.23 88.01 83.79
BQMall 93.87 91.13 90.46 88.57
PartyScene 98.56 95.59 88.24 87.33
RaceHorsesC 99.23 97.91 95.84 85.57

D

BasketballPass 98.02 93.32 87.18 75.12
BQSquare 98.64 86.95 80.34 91.24
BlowingBubbles 95.71 89.43 88.21 85.96
RaceHorses 99.43 97.59 96.67 85.86

E
FourPeople 89.99 93.09 93.76 94.17
Johnny 89.44 93.64 96.17 97.53
KristenAndSara 89.66 93.05 95.35 96.34

Class A1 94.46 90.68 91.04 89.03
Class A2 88.26 86.29 88.38 90.00
Class B 93.89 87.03 88.09 90.91
Class C 96.76 93.39 90.07 86.52
Class D 97.83 90.94 86.76 84.77
Class E 89.70 93.26 95.09 96.01

Average 91.81 88.65 89.76 90.04

all of them for the Main10 profile. The sequences mentioned in the previous
subsection have been evaluated under these conditions.

The process performed to obtain the results is detailed below:

1. Encode the sequences with the HEVC reference software (HM 16.16 [17])
using the configuration files to compare JEM with HM provided in the
JEM software (JEM 7.1 [5]), according to [23].

2. Decode each file with the HM decoder, generating both the raw video file
of the decoded sequence and the statistical information for the model.

3. Encode each raw video file with the JEM encoder, where the coding process
has been modified to integrate the proposal into the QTBT structure.
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4. Compare the stream encoded with the reference JEM encoder with each
proposed stream in order to obtain the coding efficiency and the time
reduction of the proposal.

In order to compare the performance of the implemented proposal with
the reference results obtained by the original encoder, the BD-rate and time
reduction (TR) metrics have been used. The BD-rate metric evaluates the
coding efficiency. A positive value means a penalty in bitrate of the proposal
with respect to the reference encoder, maintaining the same image quality [8].
The TR metric measures the encoding time ratio of the two encoders, and is
calculated as indicated in the following expression:

TR (%) =
Treference − Tproposal

Treference
· 100

It should be noted that the time required to obtain the statistics used by
the model is included in Tproposal. It represents only approximately 0.1% of
the encoding time, so its impact is negligible in the resulting TR.

5.3 Experimental Results

Regarding the evaluation of the model developed, which was implemented on
the JEM reference encoder (version 7.1) in order to compare the new coding
flow based on the probabilistic algorithm of this proposal with respect to the
coding based on the original QTBT structure of JEM. It should be noted
that the fast large CTU (LCTU) technique [27] implemented in JEM has been
disabled in the experiments, given that this tool skips the evaluation of certain
blocks on the basis of the splitting decision of previously encoded CUs, and
thus the evaluation would be distorted.

Table 3 shows the BD-rate and TR results for all the test sequences, which
were evaluated under the common test conditions for the RA, LB and LP
configurations. It can be observed that the sequences achieve good results in
terms of BD-rate as the penalty obtained is lower than 1.35% on average, with
a time reduction of more than 10% in all tested configurations. In addition, the
results related to the coding time show that the implemented model performs
better in high-resolution classes, that is, in classes A1, A2, B and E, as we can
see in some cases the proposal achieves time savings of nearly 20%. For the
low resolution of the test sequences belonging to the classes C and D, where
a block of 128×128 pixels represents a large part of the frame and, therefore,
the chances of splitting this block in quadtree are higher, it can be seen that
the time reduction is lower compared with the rest of the classes, but with a
negligible impact in terms of BD-rate penalty.

Regarding the performance of the proposed algorithm under different con-
figurations, it can be seen that even though the model has been developed
using statistical information obtained from the Random Access configuration,
the results verify that the model obtained is generic, that is, the effectiveness
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Table 3 Results of the proposal in RA, LB and LP configurations.

Class Sequence
Random Access Low Delay B Low Delay P

BD-rate (%) TR (%) BD-rate (%) TR (%) BD-rate (%) TR (%)

A1

Tango2 1.12 22.18 0.82 25.08 0.91 21.88
Drums100 1.69 15.72 1.52 16.15 2.61 13.75
Campfire 0.89 16.40 1.80 13.85 1.50 12.09
ToddlerFountain2 0.42 8.27 0.33 6.65 0.44 5.93

A2

CatRobot 0.47 17.24 0.86 20.40 1.29 18.00
TrafficFlow 1.03 16.89 0.37 21.70 1.91 16.52
DaylightRoad2 1.00 19.47 0.76 20.05 1.69 18.24
Rollercoaster2 1.02 23.39 0.39 25.14 0.57 21.55

B

Kimono −0.50 16.19 0.26 15.26 0.65 11.00
ParkScene 0.07 13.78 0.49 11.72 1.07 9.70
Cactus 0.06 14.50 0.13 13.37 0.57 11.19
BasketballDrive 1.06 14.65 0.75 11.82 1.35 9.87
BQTerrace 0.29 11.58 0.84 12.10 1.24 9.93

C

BasketballDrill 0.63 8.99 0.44 6.92 0.73 5.23
BQMall 0.29 9.09 0.20 6.96 0.46 5.46
PartyScene 0.04 7.61 0.23 5.41 0.54 3.91
RaceHorsesC 0.86 7.61 0.33 4.38 0.50 3.73

D

BasketballPass 2.09 4.24 1.48 2.60 1.75 1.88
BQSquare 0.15 4.59 0.29 4.68 0.69 3.78
BlowingBubbles 0.80 4.81 0.62 3.76 0.84 2.88
RaceHorses 0.97 4.44 0.67 2.53 0.61 2.13

E
FourPeople 0.93 13.37 1.80 17.14 2.96 14.14
Johnny 0.48 11.20 0.87 17.73 2.66 15.16
KristenAndSara 0.86 13.80 1.39 19.73 4.85 16.66

Class A1 1.03 15.64 0.87 15.43 1.37 13.41
Class A2 0.88 19.25 0.60 21.82 1.37 18.58
Class B 0.20 14.14 0.49 12.85 0.98 10.34
Class C 0.46 8.36 0.30 5.92 0.56 4.58
Class D 1.00 4.52 0.76 3.39 0.97 2.67
Class E 0.76 12.79 1.35 18.20 3.49 15.32

Average 0.70 12.50 0.74 12.71 1.35 10.61

of the model is similar for RA, LB and LP configurations. In fact, LB achieves,
on average, the highest time reduction.

An illustrative comparison between the baseline transcoder and the one
performed by the proposed algorithm is shown in Fig. 6. This figure displays
the partitioning performed by the two alternatives in a portion of the 14th

frame of the DaylightRoad2 sequence for the RA configuration. As can be
seen, the visual differences are minimal, since the partitioning achieved by our
algorithm is nearly the same as the baseline reference, maintaining the visual
quality of the image.
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(a) Baseline. QP 27. (b) Proposed scheme. QP 27.

Fig. 6 Comparison of the CTU/CU partitioning between the baseline transcoder and the
proposed approach.

5.4 Comparison with the Fast LCTU Encoding Tool

To the best of the authors’ knowledge, there are no other HEVC-JEM transcod-
ing proposals at the moment of writing of this manuscript. For this reason,
this subsection compares the results of our proposal with the main fast en-
coding tool implemented in JEM, which, like the proposed model, omits the
evaluation of the first partitioning level under certain circumstances. This tool,
named fast LCTU [27], is a fast decision algorithm for CU depth used to speed
up the encoding process in JEM when the maximum CTU size is set larger
or equal to 128×128 pixels. When enabled, the encoder skips the R-D evalua-
tion of certain CUs on the basis of the splitting decision of neighboring CUs.
Therefore, it is a method that affects the splitting decision of the first parti-
tioning level, and thus it was disabled in the evaluation of the proposal. This
tool can be used, however, in an HEVC-JEM cascade transcoding scenario,
which motivates its comparison with our proposal.

Table 4 shows the performance of the fast LCTU encoding technique. As
can be seen, the achieved average TR is 5.74% for RA configurations, and
slightly lower for LP and LB configurations. Regarding the coding efficiency,
the BD-rate penalty is approximately 0.4% for all configurations. Compared
with the proposed model, we can conclude that our proposal obtains more
than two times the TR achieved by fast LCTU, and almost three times in
the case of LB configurations, while also providing a good trade-off between
coding efficiency and time savings. In addition, the proposed algorithm obtains
higher TR values in both high-resolution A1 and A2 classes, which makes it
more suitable for the next-generation video coding standard.
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Table 4 Performance of Fast LCTU tool in RA, LB and LP configurations.

Class Sequence
Random Access Low Delay B Low Delay P

BD-rate (%) TR (%) BD-rate (%) TR (%) BD-rate (%) TR (%)

A1

Tango2 0.04 4.06 0.16 2.28 −0.01 2.78
Drums100 0.20 5.12 0.19 3.63 0.20 3.94
Campfire 0.47 9.54 0.65 8.18 0.96 8.91
ToddlerFountain2 −0.03 6.14 0.16 5.08 0.20 5.59

A2

CatRobot 0.27 5.42 0.18 3.49 0.28 4.21
TrafficFlow 0.77 4.11 0.31 2.87 0.31 3.00
DaylightRoad2 0.51 5.33 0.50 3.08 0.46 4.45
Rollercoaster2 0.04 4.85 0.08 3.55 0.14 3.47

B

Kimono −0.39 4.42 0.20 3.37 0.04 3.50
ParkScene 0.95 7.63 0.51 5.65 0.66 6.26
Cactus 0.48 6.99 0.26 6.34 0.23 6.33
BasketballDrive 0.23 7.73 0.32 5.95 0.23 6.43
BQTerrace 1.60 7.44 1.36 7.03 0.48 8.54

C

BasketballDrill 0.31 6.38 0.10 5.25 0.01 5.49
BQMall 0.25 5.39 0.23 3.88 0.16 2.66
PartyScene 0.14 8.99 0.22 7.01 0.13 8.61
RaceHorsesC 1.09 7.87 0.41 5.56 0.59 4.16

D

BasketballPass 0.26 4.23 −0.08 4.14 0.33 4.31
BQSquare 0.42 4.82 0.29 4.48 −0.05 6.46
BlowingBubbles 0.29 5.44 0.19 4.22 −0.16 5.54
RaceHorses 0.29 5.04 0.62 3.41 0.15 4.56

E
FourPeople 0.51 4.70 0.23 4.93 0.35 3.72
Johnny 0.46 3.07 0.54 3.40 1.19 3.56
KristenAndSara 0.75 3.11 0.64 3.85 1.10 3.16

Class A1 0.17 6.21 0.29 4.79 0.34 5.31
Class A2 0.40 4.93 0.27 3.25 0.30 3.78
Class B 0.57 6.84 0.53 5.67 0.33 6.21
Class C 0.45 7.16 0.24 5.43 0.22 5.23
Class D 0.32 4.88 0.26 4.06 0.07 5.22
Class E 0.57 3.63 0.47 4.06 0.88 3.48

Average 0.41 5.74 0.35 4.61 0.33 4.99

6 Conclusions and Future Work

In this paper, a CU partitioning decision based on an NB classifier for a video
transcoder between HEVC and JEM is presented. The algorithm decides on
splitting at the first level of the quadtree, that is, at the 128×128 pixel level.

By using the NB classifier, a decision model has been developed from fea-
tures extracted from the coding and decoding of sequences in the HM reference
encoder for the RA configuration. After applying a discretization and a subset
selection process, we obtained a model composed of four variables, namely the
variance of the block of size 128×128 pixels of the reconstructed image, the
cost in bits to encode the block in the compressed HEVC stream, the number
of pixels in the frame and the lambda value. This model obtains an accuracy



20 D. Garćıa-Lucas, G. Cebrián-Márquez, A. J. Dı́az-Honrubia, and P. Cuenca

of 91.94% with 10-fold cross-validation, and an accuracy of 90.07% for all the
test sequences.

Finally, the probabilistic model has been evaluated in a real scenario through
a simulation process to compare the stream encoded with the reference JEM
encoder and the codification flow of this proposal using the splitting decision
at the first quadtree level. This comparison has been performed for RA, LB
and LP configurations, and the results demonstrate a good trade-off between
the complexity reduction and the encoding performance achieved by the pro-
posal. The implementation of the algorithm obtains a TR of 12.50% with a
BD-rate penalty of 0.70% for the RA configuration, for which it has been de-
veloped. However, the results for LB and LP show that the model obtained is
generic, since the TR results are 12.71% and 10.61%, with penalties of 0.74%
and 1.35% in the BD-rate, respectively.

As future work, new techniques and tools will be implemented to achieve
higher time savings. While this proposal focuses on the first depth level of the
QTBT, new approaches could be taken into account for acceleration of the
remaining levels. On the one hand, the use of ML techniques has proven to
be a good alternative to predict the splitting decision of the first level. On the
other hand, the partitioning of the source HEVC bit stream could be used for
the second level onward of the QTBT, given that the first level of the quadtree
in HEVC matches the second level of the QTBT in JEM.

In addition to the partitioning structure, it would be also of interest to
design fast and efficient techniques for other encoding modules, e.g. the intra
prediction module, which could use the information of HEVC to predict the
corresponding directional mode in JEM by using ML techniques.
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