Skip to main content
Log in

Discriminative feature representation for Noisy image quality assessment

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Blind image quality assessment (BIQA) is one of the most challenging and difficult tasks in the field of IQA. Given that sparse representation through dictionary learning can learn the image feature well, this paper proposed a method termed Discriminative Feature Representation (DFR) from the perspective of feature learning for noise contaminated image quality assessment. DFR makes use of two sub-dictionaries composed of atoms featuring desirable image structures and undesirable noise, respectively. Noise is quantified via a joint evaluation of the sparse coefficients related to the atoms in the two sub-dictionaries. The method is validated using public databases with different types of noise, a comparison with other up-to-date methods is provided. The proposed method is also applied to CT images acquired at different-level doses and reconstructed by various well-known algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang Z, Bovik AC (2006) Modern image quality assessment. Syn Lect on Image Video and Multimed Proc 2(1):1–156

    Article  Google Scholar 

  2. Wang Z, Bovik AC, Sheikh HR et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Processing 13(4):600–612

    Article  Google Scholar 

  3. Hsieh J (2009) Computed tomography: principles, design, artifacts, and recent advances. SPIE, Bellingham, WA

    Google Scholar 

  4. P. Marziliano, F. Dufaux, S. Winkler et al., “A no-reference perceptual blur metric,” in IEEE Trans. Image Processing, 2002, pp. 57–60.

  5. X. Zhu and P. Milanfar, “A no-reference sharpness metric sensitive to blur and noise,” in Quality Multim. Exp. Int. Workshop, San Diego, CA, Jul. 2009, pp. 64–69.

  6. Meesters L, Martens J (2002) A single-ended blockiness measure for JPEG-coded images. Signal Process 82(3):369–387

    Article  Google Scholar 

  7. Z. Wang, A. C. Bovik, and B. L. Evans, “Blind measurement of blocking artifacts in images,” in Proc. IEEE Int. Conf. Image Process., Sep. 2000, pp. 981–984.

  8. Sheikh H, Bovik A, Cormack L (2005) No-reference quality assessment using natural scene statistics: JPEG2000. Image Processing, IEEE Transactions on 14(11):1918–1927

    Article  Google Scholar 

  9. Sazzad ZMP, Kawayoke Y, Horita Y (Apr. 2008) No-reference image quality assessment for jpeg2000 based on spatial features. Signal Process Image Commun 23(4):257–268

    Article  Google Scholar 

  10. Z. Wang, H. Sheikh, and A. Bovik, “No-reference perceptual quality assessment of JPEG compressed images,” in IEEE Image Proc., 2002, pp. 477–480.

  11. X. Feng and J. P. Allebach, “Measurement of ringing artifacts in JPEG images,” in Proc. SPIE Electr. Imag., Jan. 2006, pp. 74–83.

  12. A. Mittal, A. Moorthy, and A. Bovik, “Blind/referenceless image spatial quality evaluator,” in Conf. Rec. Asilomar C., 2011, pp. 723–727.

  13. L. He, D. Tao, X. Li, et al., “Sparse representation for blind image quality assessment,” in IEEE Conf. Comp. Vis. Patt. Recog., 2012, pp. 1146–1153.

  14. W. Xue, X. Mou, L. Zhang, et al., “Blind image quality assessment using joint statistics of Gradient magnitude and Laplacian features,” IEEE Trans. Image Process., vol.23, no.11, pp.4850,4862, Nov. 2014

  15. Moorthy A, Bovik A (2010) A two-step framework for constructing blind image quality indices. IEEE Signal Process Lett 17(5):513–516

    Article  Google Scholar 

  16. Moorthy A, Bovik A (2011) Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans Image Process 20(12):3350–3364

    Article  MathSciNet  Google Scholar 

  17. Liu L, Dong H, Huang H et al (2014) No-reference image quality assessment in curvelet domain. Signal Process Image Commun 29(4):494–505

    Article  Google Scholar 

  18. Saad M, Bovik A, Charrier C (2011) Blind image quality assessment: a natural scene statistics approach in the DCT domain. IEEE Trans Image Process 21(8):3339–3352

    Article  MathSciNet  Google Scholar 

  19. Mittal A, Muralidhar G, Ghosh J et al (2012) Blind image quality assessment without human training using latent quality factors. IEEE Signal Process. Lett. 19(2):75–78

    Article  Google Scholar 

  20. Mittal A, Soundararajan R, Bovik AC (Mar. 2013) Making a Completely Blind Image Quality Analyzer. IEEE Signal Process. Lett. 22(3):209–212

    Article  Google Scholar 

  21. C. Deng, S. Wang, A.C. Bovik, G. Huang and B. Zhao. “Blind Noisy Image Quality Assessment Using Sub-Band Kurtosis,” in IEEE Trans. Cybernetics,, pp. 1–11, 2019.

  22. J. Gu, G. Meng, J.A. Redi, . Xiang and C. Pan. “Blind image quality assessment via vector regression and object oriented pooling,” in IEEE Trans Multimedia, vol. 20, no. 5, pp. 1140–1153, 2018.

  23. Lewic M, Olshausen B, Field D (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609

    Article  Google Scholar 

  24. Olshausen B, Field D (1997) Sparse coding with an overcomplete basis set: a strategy employed by v1? Vis Res 37(23):3311–3325

    Article  Google Scholar 

  25. Guha T, Nezhadarya E, Ward RK (2014) Sparse representation-based image quality assessment. Signal Process Image Commun 29(10):1138–1148

    Article  Google Scholar 

  26. L. Zhang, Q. Zhang, B. Du, X. Huang, Y. Tang and D. Tao,“Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images,” IEEE Transactions on Cybernetics, vol. 48, no. 1 pp. 16–28, 2018

  27. L. Zhang, Q. Zhang, L. Zhang, D. Tao, X. Huang and B.Du,” Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding,” Pattern Recognition, vol. 48, no. 10, pp. 3102–3112, 2015.

  28. Lewicki M (2000) Learning overcomplete representations. Neural Comput 12:337–365

    Article  MathSciNet  Google Scholar 

  29. Kreutz-Delgado K, Murray JF, Rao BD, Engan K, Lee TW, Sejnowski TJ (2003) Dictionary learning algorithms for sparse representation. Neural Comput 15(2):349–396

    Article  Google Scholar 

  30. Donoho D, Elad M (2003) Maximal sparsity representation via l1 minimization. Proc Nat Aca Sci 100:2197–2202

    Article  Google Scholar 

  31. Elad M, Aharon M (2006) Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Processing 15:3736–3745

    Article  MathSciNet  Google Scholar 

  32. Chen Y, Shi L, Luo L et al (2014) Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans Med Imag 33(12):2271–2292

    Article  Google Scholar 

  33. Wright J, Yang A, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  34. Chang H-W, Wang M-W (2011) Sparse correlation coefficient for objective image quality assessment. Signal Process Image Commun 26(10):577–588

    Article  Google Scholar 

  35. Chang H-W, Yang H, Gan Y et al (2013) Sparse feature fidelity for perceptual image quality assessment. IEEE Trans Image Process 22(10):4007–4018

    Article  MathSciNet  Google Scholar 

  36. K.V.S.N.L. Manasa Priya and SS Channappayya, “A novel sparsity-inspired blind image quality assessment algorithm,” Signal and Information Processing (GlobalSIP), pp. 984–988, 2014.

  37. K.V.S.N.L. Manasa Priya , Balasubramanyam Appina and Sumohana Channappayya, “No-reference image quality assessment using statistics of sparse representation,” International Conference on Signal Processing and Communications (SPCOM), pp. 1–5, 2016.

  38. Guha T, Nezhadarya E, Ward RK (2014) Sparse representation-based image quality assessment. Signal Processing Image Communication 29(10):1138–1148

    Article  Google Scholar 

  39. Davis G, Mallat S, Avellaneda M (1997) Adaptive greedy approximations. Constr Approx 13(1):57–98

    Article  MathSciNet  Google Scholar 

  40. Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition,” Conf. Rec. Asilomar C., 1993, pp. 40–44.

  41. Rubinstein R, Zibulevsky M, Elad M (2008) Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Technion 40:1–15

    Google Scholar 

  42. Aharon M, Elad M, Bruckstein A (2006) K-SVD: an algorithm for designing Overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Article  Google Scholar 

  43. M. Yang, L. Zhang, X. Feng et al., “Fisher discrimination dictionary learning for sparse representation.” in IEEE Int. Conf. Comp. Vis., 2011, pp. 543–550.

  44. Duda R, Hart P, Stork D (2000) Pattern classification, 2nd edn. Wiley-Interscience, New York, NY

    MATH  Google Scholar 

  45. H. R. Sheikh, Z. Wang, L. Cormack, et al. (2005). LIVE image quality assessment database release 2. [online]. Available: http://live.ece.utexas.edu/research/quality.

  46. Ponomarenko N, Lukin V, Zelensky A et al (2009) TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv Mod Radio Electron 10(4):30–45

    Google Scholar 

  47. H. Tang, N. Joshi, and A. Kapoor, "Learning a blind measure of perceptual image quality." in IEEE Conf. Comp. Vis. Patt. Recog., 2011, pp. 305–312.

  48. P. Ye, J. Kumar, L. Kang, et al., “Unsupervised feature learning framework for no-reference image quality assessment,” in IEEE Conf. Comp. Vis. Patt. Recog., 2012, pp. 1098–1105.

  49. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15(2):430–444

    Article  Google Scholar 

  50. Sheikh HR, Bovik AC, De Veciana G (2005) An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans Image Process 14(12):2117–2128

    Article  Google Scholar 

  51. Håkansson M, Svensson S, Zachrisson S et al (2010) ViewDEX: an efficient and easy-to-use software for observer performance studies. Radiat Prot Dosimet 139(1–3):42–51

    Article  Google Scholar 

  52. Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance 1. Radiographics 24(6):1679–1691

    Article  Google Scholar 

  53. J. Liu, Y. Hu, J. Yang, Y. Chen, H. Shu, L. Luo, Q. Feng, Z. Gui, and G. Coatrieux, “3D feature constrained reconstruction for low dose CT imaging,” IEEE Transactions on Circuits and System for Video Technology, vol. 28, no. 8, pp. 1232–1247, 2018.

  54. Ying X, Zhao Q, Liu J, Chen Y (2019) Domain progressive 3D residual Convulutional network to improve low dose CT imaging. IEEE Trans Med Imaging:1–1

  55. Liu J, Ma J, Chen Y (2017) Discriminative feature representation to improve projection data inconsistency for low dose CT imaging. IEEE Trans Med Imaging 36(12):2499–2509

    Article  Google Scholar 

  56. Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L, Coatrieux J, Chen W (2014) Artifact suppressed dictionary learning for low-dose CT imaging processing. IEEE Trans Med Imaging 33(12):2271–2292

    Article  Google Scholar 

  57. N. Wen, H. Guan, R. Hammoud, D. Pradhan, T. Nurushev, S. Li, et al., “Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer,” Phys. Med. Biol, vol. 52, no. 8, pp. 2267, Apr. 2007.

  58. de Gonzalez AB, Darby S (Jan. 2004) Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet 363(9406):345–351

    Article  Google Scholar 

  59. M. K. Kalra, M. M. Maher, T. L. Toth, B. Schmidt, B. L. et al., “Techniques and applications of automatic tube current modulation for CT,” Radiology, vol. 233, no. 3, pp. 649–657, Dec. 2004.

  60. Boedeker KL, Cooper VN, Mcnittgray MF (2007) Application of the noise power spectrum in modern diagnostic MDCT: part I. measurement of noise power spectra and noise equivalent quanta.[J]. Phys Med Biol 52(14):4027–4046

    Article  Google Scholar 

  61. Benesty, Jacob, et al. "Pearson correlation coefficient."Noise reduction in speech processing. Springer Berlin Heidelberg, 2009. 1–4.

  62. Abdi H (2007) The Kendall rank correlation coefficient. Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA, pp 508–510

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFA0704102, Grant 2017YFA0104302, Grant 2017YFC0109202 and Grant 2017YFC0107900, in part by the National High Technology Research and Devlopment Program of China (863 Program), under Grant 2015AA043203, in part by the National Natural Science Foundation under Grant 81827805, Grant 61801003, Grant 61871117, and Grant 81530060, in part by the Key Laboratory of Health Informatics, Chinese Academy of Sciences, in part by the Fundamental Research Funds for the Central Universities, in part by the Joint Research Project of Southeast University and Nanjing Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Tang, H., Lv, T. et al. Discriminative feature representation for Noisy image quality assessment. Multimed Tools Appl 79, 7783–7809 (2020). https://doi.org/10.1007/s11042-019-08424-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08424-0

Keywords

Navigation