Skip to main content
Log in

Linear regression classification steered discriminative projection for dimension reduction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Because of the simplicity and effectiveness of linear regression classification (LRC), LRC is widely applied into image classification. However, it processes the original high-dimensional data directly. It is well known that the original data usually contains a lot of redundant information or noise, which will reduce the performance of LRC algorithm and increase its running cost. At the same time, it usually suffers from out of sample problem. In order to overcome the weaknesses of LRC, a novel dimension reduction algorithm termed linear regression classification steered discriminative projection (LRC-DP) is presented by combining LRC with discriminative projection. LRC-DP not only fits LRC well, but also seeks a linear projection, in which the ratio of between-class reconstruction errors to within-class reconstruction errors is maximized in the transformation space. The proposed LRC-DP can learn a robust low-dimensional projection subspace from the original sample images in high-dimension space. In order to validate the performance of LRC-DP algorithm, extensive experiments are conducted on several public image databases. Experimental results reveal that the LRC-DP algorithm is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barsi R, Jacobs D (2003) Lambertian reflection and linear subspaces. IEEE Trans Pattern Anal Mach Intell 25(2):218–233

    Article  Google Scholar 

  2. Cai D, He X, Zhou K (2007) Locality sensitive discriminant analysis. Int. Joint Conf. on Artificial Intelligence (IJCAI’07):708–713

  3. Chen S, Ding CHQ, Luo B (2018) Linear regression based projections for dimensionality reduction. Inf Sci 467:74–86

    Article  MathSciNet  Google Scholar 

  4. Fan Z, Xu Y, Zhang D (2011) Local linear discriminant analysis framework using sample neighbors. IEEE Trans Neural Netw 22(7):1119–1132

    Article  Google Scholar 

  5. Gao G, Yang J, Songsong W (2015) Bayesian sample steered discriminative regression for biometric image classification. Appl Soft Comput 37:48–59

    Article  Google Scholar 

  6. Gao Q, Wang Q, Huang Y (2015) Dimensionality reduction by integrating sparse representation and fisher criterion and its application. IEEE Trans Image Process 24(12):5684–5695

    Article  MathSciNet  Google Scholar 

  7. He X, Yan S, Hu Y et al (2005) Face recognition using Laplacian faces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  8. Hua J, Wang H, Ren M et al (2016) Dimension reduction using collaborative representation reconstruction based projections. Neurocomputing 193:1–6

    Article  Google Scholar 

  9. Huang P, Gao G, Qian C et al (2017) Fuzzy linear regression discriminant projection for face recognition. IEEE Access 5:4340–4349

    Article  Google Scholar 

  10. Huang K, Dai D, Ren C (2018) Regularized coplanar discriminant analysis for dimensionality reduction. Pattern Recogn 62:87–98

    Article  Google Scholar 

  11. Jonathon Phillips P, Wechsler H, Huang J et al (1998) The FERET database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16(5):295–306

    Article  Google Scholar 

  12. Li P, Yu J, Wang M, Zhang L, Cai D, Li X (2017) Constrained low-rank learning using least squares-based regularization. IEEE Trans Cybern 47(12):4250–4262

    Article  Google Scholar 

  13. Liu G, Ping L (2016) Low-rank matrix completion in the presence of high coherence. IEEE Trans Signal Process 64(21):5623–5633

    Article  MathSciNet  Google Scholar 

  14. Liu GH, Yang JY (2019) Exploiting color volume and color difference for salient region detection. IEEE Trans Image Process 28(1):6–16

    Article  MathSciNet  Google Scholar 

  15. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  16. Liu Z, Lai Z, Ou W, et al (2020) Structured optimal graph based sparse feature extraction for semi-supervised learning. Signal Processing. https://doi.org/10.1016/j.sigpro.2020.107456

  17. Liu Z, Liu G, Pu J et al (2018) Orthogonal sparse linear discriminant analysis. Int J Syst Sci 49(4):848–858

    Article  MathSciNet  Google Scholar 

  18. Liu Z, Wang J, Liu G, et al (2019) Discriminative low-rank preserving projection for dimensionality reduction. Appl Soft Comput J 85:105768

  19. Lu Y, Lai Z, Xu Y, Li X, Zhang D, Yuan C (2016) Low-rank preserving projections. IEEE Trans Cybern 46(8):1900–1913

    Article  Google Scholar 

  20. Ma Z, Zhan Z, Ouyang X et al (2018) Nonlinear dimensionality reduction based on HSIC maximization. IEEE Access 6:55537–55555

    Article  Google Scholar 

  21. A. M. Martinez, R. Benavente. The AR face database. Centre de Visio per Computador, Univ. Auton. Barcelona, Barcelona, Spain, Tech. Rep. 24, Jun. 1998.

  22. Mo D, Lai Z (2019) Robust jointly sparse regression with generalized orthogonal learning for image feature selection. Pattern Recogn 93:164–178

    Article  Google Scholar 

  23. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  24. Pang Y, Zhou B, Nie F (2019) Simultaneously learning neighborship and projection matrix for supervised dimensionality reduction. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2018.2886317

  25. Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recogn 43(1):331–341

    Article  Google Scholar 

  26. Wang L, Wu H, Pan C (2015) Manifold regularized local sparse representation for face recognition. IEEE Trans Circuits Syst Video Technol 25(4):651–659

    Article  Google Scholar 

  27. Wen J, Xu Y, Li Z et al (2018) Inter-class sparsity based discriminative least square regression. Neural Netw 102:36–47

    Article  Google Scholar 

  28. Wong WK, Lai Z, Wen J et al (2017) Low-rank embedding for robust image feature extraction. IEEE Trans Image Process 99:1–13

    MathSciNet  MATH  Google Scholar 

  29. Wright J, Yang AY, Ganesh A et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  30. Xie L, Yin M, Yin X, Liu Y, Yin G (2018) Low-rank sparse preserving projections for dimensionality reduction. IEEE Trans Image Process 27(11):5261–5274

    Article  MathSciNet  Google Scholar 

  31. Xu Y, Zhang D, Yang J et al (2011) A two-phase test sample sparse representation method for use with face recognition. IEEE Trans Circuits Syst Video Technol 21(9):1255–1262

    Article  MathSciNet  Google Scholar 

  32. Xu Y, Fang X, Wu J et al (2016) Discriminative transfer subspace learning via low-rank and sparse representation. IEEE Trans Image Process 25(2):850–863

    Article  MathSciNet  Google Scholar 

  33. Yang J, Zhang L, Xu Y et al (2012) Beyond sparsity: the role of L1-optimizer in pattern classification. Pattern Recogn 45(3):1104–1118

    Article  Google Scholar 

  34. Yang J, Chu D, Zhang L, Xu Y, Yang J (2013) Sparse representation classifier steered discriminative projection with applications to face recognition. IEEE Trans Neural Netw Learn Syst 24(7):1023–1035

    Article  Google Scholar 

  35. Zhang N, Yang J (2013) Low-rank representation based discriminative projection for robust feature extraction. Neurocomputing 111:13–20

    Article  Google Scholar 

  36. Zhang L, Yang M, Feng Z (2010) On the dimensionality reduction for sparse representation based face recognition, 20th international Conference on Pattern Recognition (ICPR):23–26

  37. Zhang L, Yang M, Feng XC (2011) Sparse representation or collaborative representation: which helps face recognition? In ICCV 2011:1–8

    Google Scholar 

  38. Zhang Z, Yan S, Zhao M (2014) Similarity preserving low-rank representation for enhanced data representation and effective subspace learning. Neural Netw 53:81–94

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by NSFC of China (U1504610), National Key Research and Development Project (2016YFE0104600), Natural Science Foundations of Henan Province (192102210130, 19B520008), the Natural Science Foundation of Guangdong Province (2016A030307050, 2016A020225008, 2017A040405062). The image databases used in my paper are publicly available for scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhonghua Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, G., Zhang, L. et al. Linear regression classification steered discriminative projection for dimension reduction. Multimed Tools Appl 79, 11993–12005 (2020). https://doi.org/10.1007/s11042-019-08434-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08434-y

Keywords

Navigation