Skip to main content
Log in

Accurate coarse soft tissue modeling using FEM-based fine simulation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Finite element method is a well-known approach in soft tissue modeling. However, it introduces nonconforming deformations for a soft tissue in different resolutions in response to the same applied force. These deformations make the approach inefficient in data-driven enrichment schemes which demand more accurate conforming models of an object in both low and high resolutions at the same time. This paper presents two methods based on (1) Sampling and (2) Barycentric mapping to overcome this problem and to generate geometrically conforming deformations in different resolutions. In proposed methods, first, the soft tissue is modeled in high resolution by using finite element method to achieve the desired accuracy. The coordinates of this accurate model are then used to find the corresponding coordinates of the coarse model. This step is done by using either Sampling or Barycentric mapping. Quantitative evaluation of the simulation results confirms the efficiency of suggested methods in modeling geometrically conforming soft tissues in different resolutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alexander O, Rogers M, Lambeth W, Chiang JY, Ma WC, Wang CC, Debevec P (2010) The digital emily project: achieving a photorealistic digital actor. IEEE Comput Graph Appl 30(4):20–31

    Article  Google Scholar 

  2. Anguelov D, Srinivasan P, Koller D, Thrun S, Rodgers J, Davis J (2005) Scape: shape completion and animation of people. In: ACM transactions on graphics (TOG), vol 24. ACM, pp 408–416

  3. Barbič J, Sin F, Grinspun E (2012) Interactive editing of deformable simulations. ACM Trans Graph (TOG) 31(4):70

    Article  Google Scholar 

  4. Bell N, Yu Y, Mucha PJ (2005) Particle-based simulation of granular materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation. ACM, pp 77–86

  5. Bro-Nielsen M, Cotin S (1996) Real-time volumetric deformable models for surgery simulation using finite elements and condensation. In: Computer graphics forum, vol 15. Wiley Online Library, pp 57–66

  6. Capell S, Green S, Curless B, Duchamp T, Popović Z. (2002) A multiresolution framework for dynamic deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation. ACM, pp 41–47

  7. Chen D, Levin DI, Matusik W, Kaufman DM (2017) Dynamics-aware numerical coarsening for fabrication design. ACM Trans Graph (TOG) 36(4):84

    Article  Google Scholar 

  8. Chen YJE, Levin DI, Kaufmann D, Ascher U, Pai DK (2019) Eigenfit for consistent elastodynamic simulation across mesh resolution. In: Proceedings of the 18th annual ACM SIGGRAPH/eurographics symposium on computer animation. ACM, p 5

  9. Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Visual Comput Graph 5(1):62–73

    Article  Google Scholar 

  10. Debunne G, Desbrun M, Barr A, Cani MP (1999) Interactive multiresolution animation of deformable models. In: Computer animation and simulation’99. Springer, pp 133–144

  11. Delingette H, Ayache N (2004) Soft tissue modeling for surgery simulation. Handbook Numer Anal 12:453–550

    MathSciNet  Google Scholar 

  12. Der KG, Sumner RW, Popović J. (2006) Inverse kinematics for reduced deformable models. In: ACM Transactions on graphics (TOG), vol 25. ACM, pp 1174–1179

  13. Etzmuß O, Keckeisen M, Straßer W (2003) A fast finite element solution for cloth modelling. In: 11th Pacific conference oncomputer graphics and applications, 2003. Proceedings. IEEE, pp 244–251

  14. Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, Talbot H, Courtecuisse H, Bousquet G, Peterlik I et al (2012) Sofa: a multi-model framework for interactive physical simulation. In: Soft tissue biomechanical modeling for computer assisted surgery. Springer, pp 283–321

  15. Feng WW, Yu Y, Kim BU (2010) A deformation transformer for real-time cloth animation. In: ACM transactions on graphics (TOG), vol 29. ACM, p 108

  16. Fulton L, Modi V, Duvenaud D, Levin DI, Jacobson A (2019) Latent-space dynamics for reduced deformable simulation. In: Computer graphics forum, vol 38. Wiley Online Library, pp 379–391

  17. Ichim AE, Kadleček P, Kavan L, Pauly M (2017) Phace: physics-based face modeling and animation. ACM Trans Graph (TOG) 36(4):153

    Article  Google Scholar 

  18. Kharevych L, Mullen P, Owhadi H, Desbrun M (2009) Numerical coarsening of inhomogeneous elastic materials. In: ACM Transactions on graphics (TOG), vol 28. ACM, p 51

  19. Kim M, Pons-Moll G, Pujades S, Bang S, Kim J, Black MJ, Lee SH (2017) Data-driven physics for human soft tissue animation. ACM Trans Graph (TOG) 36(4):54

    Article  Google Scholar 

  20. Koch RM, Gross M, Carls FR, von Büren DF, Fankhauser G, Parish YI (1996) Simulating facial surgery using finite element models. Technischer Bericht/Eidgenössische Technische Hochschule. Departement Informatik, p 246

  21. Liu HTD, Jacobson A, Ovsjanikov M (2019) Spectral coarsening of geometric operators. arXiv:https://arxiv.org/abs/1905.05161

  22. Loper M, Mahmood N, Romero J, Pons-Moll G, Black MJ (2015) Smpl: a skinned multi-person linear model. ACM Trans Graph (TOG) 34(6):248

    Article  Google Scholar 

  23. Ma WC, Wang YH, Fyffe G, Chen BY, Debevec P (2012) A blendshape model that incorporates physical interaction. Comput Anim Virt Worlds 23(3–4):235–243

    Article  Google Scholar 

  24. Müller M., Gross M (2004) Interactive virtual materials. In: Proceedings of graphics interface 2004. Canadian Human-Computer Communications Society, pp 239–246

  25. Nedel LP, Thalmann D (1998) Real time muscle deformations using mass-spring systems. In: Proceedings. Computer graphics international (Cat. No. 98EX149). IEEE, pp 156–165

  26. Nesme M, Kry PG, Jeřábková L, Faure F (2009) Preserving topology and elasticity for embedded deformable models. In: ACM Transactions on graphics (TOG), vol 28. ACM, p 52

  27. Nesme M, Payan Y, Faure F (2005) Efficient, physically plausible finite elements. In: Eurographics

  28. Nesme M, Payan Y, Faure F (2006) Animating shapes at arbitrary resolution with non-uniform stiffness. In: VRIPHYS

  29. Pons-Moll G, Romero J, Mahmood N, Black MJ (2015) Dyna: a model of dynamic human shape in motion. ACM Trans Graph (TOG) 34(4):120

    Article  Google Scholar 

  30. Seiler M, Spillmann J, Harders M (2012) Enriching coarse interactive elastic objects with high-resolution data-driven deformations. In: Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation. Eurographics Association, pp 9–17

  31. Seiler M, Spillmann J, Harders M (2014) Data-driven simulation of detailed surface deformations for surgery training simulators. IEEE Trans Visual Comput Graph 20(10):1379–1391

    Article  Google Scholar 

  32. Terzopoulos D, Platt J, Barr A, Fleischer K (1987) Elastically deformable models. ACM Siggraph Comput Graph 21(4):205–214

    Article  Google Scholar 

  33. Torres R, Rodríguez A, Espadero JM, Otaduy MA (2016) High-resolution interaction with corotational coarsening models. ACM Trans Graph (TOG) 35(6):211

    Article  Google Scholar 

  34. Xu H, Li Y, Chen Y, Barbič J (2015) Interactive material design using model reduction. ACM Trans Graph (TOG) 34(2):18

    Article  Google Scholar 

  35. Zhou J, Luo Z, Li C, Deng M (2018) Real-time deformation of human soft tissues: a radial basis meshless 3d model based on Marquardt’s algorithm. Comput Methods Programs Biomed 153:237–252

    Article  Google Scholar 

  36. Zou Y, Liu PX (2017) A high-resolution model for soft tissue deformation based on point primitives. Comput Methods Programs Biomed 148:113–121

    Article  Google Scholar 

  37. Zurdo JS, Brito JP, Otaduy MA (2013) Animating wrinkles by example on non-skinned cloth. IEEE Trans Vis Comput Graph 19(1):149–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa Shamsi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounik, Z., Shamsi, M. & Sedaaghi, M.H. Accurate coarse soft tissue modeling using FEM-based fine simulation. Multimed Tools Appl 79, 7121–7134 (2020). https://doi.org/10.1007/s11042-019-08532-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-08532-x

Keywords

Navigation