Skip to main content
Log in

A study on Subtractive Pixel Adjacency Matrix features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Subtractive Pixel Adjacency Matrix (SPAM) features perform well in detecting spatial-domain steganographic algorithm. Further, some methods of SPAM features can be applied to rich models and steganalysis based on deep learning. Therefore, this paper presents a study on SPAM features and it is divided into two parts: in the first part, impact of spatial-domain steganographic on difference between adjacent pixels is first analyzed. Then, three SPAM features are proposed with the same range of differences and different orders of Markov chain. Following that, the influences of order of Markov chain and range of differences on SPAM features are analyzed, and we find that detection accuracy of SPAM features increases with the range of differences increasing; in the second part, SPAM feature is first divided into several modules according to the conclusion. Then, taking detection accuracy of support vector machine (SVM) classifier and mutual information as metrics and module as a unit, a Novel Feature Selection (NFS) algorithm and an Improved Feature Selection algorithm are proposed. Experimental results show that the NFS algorithm can achieve higher detection accuracy than several existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adeli A, Broumandnia A (2018) Image steganalysis using improved particle swarm optimization based feature selection. Appl Intell 48(6):1609–1622

    Article  Google Scholar 

  2. Anita CJ, Ramesh R, Gomathy C, Vaishali D (2018) Nature inspired metaheuristics for improved JPEG steganalysis. Multimed Tools Appl 77 (11):13701–13720

    Article  Google Scholar 

  3. ASU feature selection package. http://featureselection.asu.edu

  4. Bennasar M, Hicks Y, Setchi R (2015) Feature selection using joint mutual information maximisation. Expert Syst Appl 42(22):8520–8532

    Article  Google Scholar 

  5. BOWS2 database. http://bows2.ec-lille.fr

  6. Cao WQ, Guan QX, Zhao XF, Wang KR, Han JS (2017) Constructing local information feature for spatial image steganalysis. Multimed Tools Appl 76 (11):13221–13237

    Article  Google Scholar 

  7. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27

    Article  Google Scholar 

  8. Cheddad A, Condell J, Curran K, Kevitt PM (2010) Digital image steganography: survey and analysis of current methods. Signal Process 90(3):727–752

    Article  MATH  Google Scholar 

  9. Chhikara RR, Sharma P, Singh L (2018) An improved dynamic discrete firefly algorithm for blind image steganalysis. Int J Mach Learn Cybern 9(5):821–835

    Article  Google Scholar 

  10. Deng XL, Li YQ, Weng J, Zhang JL (2018) Feature selection for text classification: a review. Multimed Tools Appl, 1–20

  11. Estevez PA, Tesmer M, Perez CA, Zurada JM (2009) Normalized mutual information feature selection. IEEE Trans Neural Netw 20(2):189–201

    Article  Google Scholar 

  12. Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued attributes for classification learning. In: Proc. International joint conference on artificial intelligence, pp 1022–1029

  13. Feng GR, Zhang HY, Zhang XP (2014) Effective feature selection for image steganalysis using extreme learning machine. J Electron Imag 23(6):063020–1-5

    Article  Google Scholar 

  14. Fridrich J, Kodovsky J (2012) Rich models for steganalysis of digital images. IEEE Trans Inform Forens Secur 7(3):868–882

    Article  Google Scholar 

  15. Gao WF, Hu L, Zhang P (2018) Class-specific mutual information variation for feature selection. Pattern Recogn 79:328–339

    Article  Google Scholar 

  16. Ghareh MF, Saniee AM (2014) Image steganalysis using a bee colony based feature selection algorithm. Eng Appl Artif Intell 31:35–43

    Article  Google Scholar 

  17. Holub V, Fridrich J (2013) Random projections of residuals for digital image steganalysis. IEEE Trans Inform Forens Secur 8(12):1996–2006

    Article  Google Scholar 

  18. Hosseini HDM, Mahdavi M (2015) F plus KS: a new feature selection strategy for steganalysis. In: Computer science and software engineering

  19. Ker AD (2005) Steganalysis of LSB matching in grayscale images. IEEE Signal Process Lett 12(6):441–444

    Article  Google Scholar 

  20. Khelifi F, Brahimi T, Han JG, Li XL (2018) Secure and privacy-preserving data sharing in the cloud based on lossless image coding. Signal Process 148:91–101

    Article  Google Scholar 

  21. Li B, Li ZP, Zhou SJ, Tan SQ, Xl Zhang (2018) New steganalytic features for spatial image steganography based on derivative filters and threshold LBP operator. IEEE Trans Inform Forens Secur 13(5):1242–1257

    Article  Google Scholar 

  22. Liu QZ, Sung AH, Chen ZX (2008) Feature mining and pattern classification for steganalysis of LSB matching steganography in grayscale images. Pattern Recogn 41(1):56–66

    Article  MATH  Google Scholar 

  23. Liu QZ, Sung AH, Ribeiro B, Wei MZ, Chen ZX, Xu JY (2008) Image complexity and feature mining for steganalysis of least significant bit matching steganography. Inform Sci 178(1):21–36

    Article  Google Scholar 

  24. Lu JC, Liu FL, Luo XY (2014) Selection of image features for steganalysis based on the Fisher criterion. Digit Investig 11(1):57–66

    Article  Google Scholar 

  25. Luo XY, Wang DS, Wang P, Liu FL (2008) A review on blind detection for image steganography. Signal Process 88(9):2138–2157

    Article  MATH  Google Scholar 

  26. Miche Y, Roue B, Lendasse A, Bas P (2006) A feature selection methodology for steganalysis. In: Multimedia content representation, classification and security, pp 49–56

  27. Mohammadi FG, Abadeh MS (2014) A new metaheuristic feature subset selection approach for image steganalysis. J Intell Fuzzy Syst 27(3):1445–1455

    Article  Google Scholar 

  28. Mohammadi FG, Sajedi H (2017) Region based image steganalysis using artificial bee colony. J Vis Commun Image Represent 44:214–226

    Article  Google Scholar 

  29. Peng HC, Long FH, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  30. Pevny T, Bas P, Fridrich J (2009) Steganalysis by Subtractive Pixel Adjacency Matrix. In: ACM Multimedia and security workshop, pp 75–83

  31. Pevny T, Bas P, Fridrich J (2010) Steganalysis by subtractive pixel adjacency matrix. IEEE Trans Inform Forens Secur 5(2):215–224

    Article  Google Scholar 

  32. Sullivan K, Madhow U, Chandrasekaran S, Manjunath BS (2005) Steganalysis of spread spectrum data hiding exploiting cover memory. In: Proc. conference on security, steganography and watermarking of multimedia contents, pp 28–46

  33. Wang Y, Moulin P (2007) Optimized feature extraction for learning-based image steganalysis. IEEE Trans Inform Forens Secur 2(1):31–45

    Article  Google Scholar 

  34. Wang PF, Wei ZH, Xiao L (2016) Pure spatial rich model features for digital image steganalysis. Multimed Tools Appl 75(5):2897–2912

    Article  Google Scholar 

  35. WEKA Software. http://www.cs.waikato.ac.nz/ml/weka

  36. Wu GS, Lin ZJ, Han JG, Liu L, Ding GG, Zhang BC, Shen JL (2018) Unsupervised deep hashing via binary latent factor models for large-scale cross-modal retrieval. In: Proc. International joint conference on artificial intelligence, pp 2854–2860

  37. Xie CH, Cheng YM, Chen YK (2011) An active steganalysis approach for echo hiding based on sliding windowed cepstrum. Signal Process 91(4):877–889

    Article  MATH  Google Scholar 

  38. Xu GS, Wu HZ, Shi YQ (2016) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712

    Article  Google Scholar 

  39. Yan CG, Zhang YD, Xu JZ, Dai F, Li L, Dai QH, Wu F (2014) A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process Lett 21(5):573–576

    Article  Google Scholar 

  40. Yan CG, Xie HT, Chen JJ, Zha ZJ, Hao XH, Zhang YD, Dai QH (2018) A fast uyghur text detector for complex background images. IEEE Trans Multimed 20(12):3389–3398

    Article  Google Scholar 

  41. Yan CG, Xie HT, Liu S, Yin J, Zhang YD, Dai QH (2018) Effective uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans Intell Transp Syst 19(1):220–229

    Article  Google Scholar 

  42. Yan CG, Xie HT, Yang DB, Yin J, Zhang YD, Dai QH (2018) Supervised hash coding with deep neural network for environment perception of intelligent vehicles. IEEE Trans Intell Transp Syst 19(1):284–295

    Article  Google Scholar 

  43. Yao C, Liu YF, Jiang B, Han JG, Han JW (2017) LLE score: a new filter-based unsupervised feature selection method based on nonlinear manifold embedding and its application to image recognition. IEEE Trans Image Process 26(11):5257–5269

    Article  MathSciNet  MATH  Google Scholar 

  44. Ye J, Ni JQ, Yi Y (2017) Deep learning hierarchical representations for image steganalysis. IEEE Trans Inf Forens Secur 12(11):2545–2557

    Article  Google Scholar 

  45. Zeng JS, Tan SQ, Li B, Huang JW (2018) Large-scale JPEG image steganalysis using hybrid deep-learning framework. IEEE Trans Inform Forens Secur 13(5):1200–1214

    Article  Google Scholar 

  46. Zou DK, Shi YQ, Su W, Xuan GR (2006) Steganalysis based on Markov model of thresholded prediction-error image. In: Proc. multimedia and expo, pp 1365–1368

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61771334).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichang Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Guo, J. A study on Subtractive Pixel Adjacency Matrix features. Multimed Tools Appl 78, 19681–19695 (2019). https://doi.org/10.1007/s11042-019-7285-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7285-1

Keywords

Navigation