Skip to main content

Advertisement

Log in

Finding community of brain networks based on artificial bee colony with uniform design

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The brain networks can offer fundamental insights into healthy human cognition and the alteration in disease. Some neural unit modules in brain networks can provide us a great deal of useful information. It is appealing how to find these neural unit modules and how to partition the brain network into several dense modules. There are as high within-module densities as possible and as low between-module densities as possible in these dense modules. The modularity metrics can well evaluate whether a community is good or not. Therefore, we present a novel method to find community modules of brain networks in this study. It integrates uniform design into artificial bee colony (abbreviated as UABC) in order to maximize the modularity metrics. The difference between UABC and the other existing methods lies in that UABC is presented at the first time for detecting community modules. Several brain networks generated from functional MRI for studying Autism are used to test the proposed algorithm. Experimental results performing on these brain networks demonstrate that the proposed algorithm UABC can acquire better modularity and higher stability than other competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Almeida H et al (2011) Is there a best quality metric for graph clusters?[C]. the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part I, ECML PKDD’11. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 44–59

    Google Scholar 

  2. Azevedo FAC et al (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain [J]. J Comp Neurol 513(5):532–541

    Article  Google Scholar 

  3. Betzel RF et al (2014) Changes in structural and functional connectivity among resting-state networks across the human lifespan[J]. NeuroImage 102:345–357

    Article  Google Scholar 

  4. Bharti K, Singh P (2015) Chaotic gradient artificial bee colony for text clustering[J]. Soft Comput, 1–14

  5. Bilal S, Abdelouahab M (2017) Evolutionary algorithm and modularity for detecting communities in networks[J]. Physica A: Stat Mech Applic 473:89–96

    Article  MATH  Google Scholar 

  6. Blondel VD et al (2008) Fast unfolding of communities in large networks[J]. J Stat Mech: Theor Experiment 2008(10):P10008

    Article  MATH  Google Scholar 

  7. Brown JA et al (2012) The UCLA multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis[J]. Front Neuroinform 6:28

    Article  Google Scholar 

  8. Cao Y et al (2018) An improved global best guided artificial bee colony algorithm for continuous optimization problems[J]. Clust Comput 2018(2018):1–9

    Google Scholar 

  9. Cui L et al (2018) Modified Gbest-guided artificial bee colony algorithm with new probability model[J]. Soft Comput 22(7):2217–2243

    Article  Google Scholar 

  10. Da L, Costa F et al (2007) Characterization of complex networks: a survey of measurements[J]. Adv Phys 56(1):167–242

    Article  Google Scholar 

  11. Dai C, Wang Y (2015) A new decomposition based evolutionary algorithm with uniform designs for many-objective optimization[J]. Appl Soft Comput 30(1):238–248

    Article  Google Scholar 

  12. Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization[J]. Phys Rev E 72(2):027104–1-027104-4

    Article  Google Scholar 

  13. Feng J et al (2017) A novel chaos optimization algorithm[J]. Multimed Tools Appl 76(16):17405–17436

    Article  Google Scholar 

  14. Fortunato S (2010) Community detection in graphs[J]. Phys Rep 486(3):75–174

    Article  MathSciNet  Google Scholar 

  15. Garcia JO, et al. (2018) Applications of community detection techniques to brain graphs: algorithmic considerations and implications for neural function[J]. Proc IEEE

  16. Girvan M, Newman M (2002) Community structure in social and biological networks[J]. Proc Natl Acad Sci U S A 99(12):7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  17. Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain[J]. Front Hum Neurosci 3:31

    Article  Google Scholar 

  18. Jia L, Wang Y, Fan L (2016) An improved uniform design-based genetic algorithm for multi-objective bilevel convex programming[J]. Int J Comput Sci Eng 12(1):38–46

    Google Scholar 

  19. Juneja A, Rana B, Agrawal RK (2018) FMRI based computer aided diagnosis of schizophrenia using fuzzy kernel feature extraction and hybrid feature selection[J]. Multimed Tools Appl 77(3):3963–3989

    Article  Google Scholar 

  20. Karaboga D, (2005) An idea based on honey bee swarm for numerical optimization, technical report - TR06[M]

  21. Koenis MMG et al (2018) Association between structural brain network efficiency and intelligence increases during adolescence[J]. Hum Brain Mapp 39(2):822–836

    Article  Google Scholar 

  22. Leung Y-W, Wang Y (2000) Multiobjective programming using uniform design and genetic algorithm[J]. IEEE Trans Syst Man Cybern Part C Appl Rev 30(3):293–304

    Article  Google Scholar 

  23. Li Z et al (2008) Quantitative function for community detection[J]. Phys Rev E 77(3):036109–1-036109-10

    Article  Google Scholar 

  24. Li Y et al (2018) Local spectral clustering for overlapping community detection[J]. ACM Trans Knowl Discov Data (TKDD) 12(2):17

    Google Scholar 

  25. Liu J, Liu T (2010) Detecting community structure in complex networks using simulated annealing with k-means algorithms[J]. Physica A: Stat Mech Applic 389(11):2300–2309

    Article  Google Scholar 

  26. Liu J et al (2017) Complex brain network analysis and its applications to brain disorders: a survey[J]. Complexity 2017

  27. Liu X, Wang Y, Liu H (2017) A hybrid genetic algorithm based on variable grouping and uniform design for global optimization[J]. J Comput 28(3):93–107

    Google Scholar 

  28. Mears D, Pollard HB (2016) Network science and the human brain: using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease[J]. J Neurosci Res 94(6):590–605

    Article  Google Scholar 

  29. Newman MEJ (2004) Fast algorithm for detecting community structure in networks[J]. Phys Rev E 69(6):066133–1-066133-5

    Article  Google Scholar 

  30. Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices[J]. Phys Rev E 74(3):036104–1-036104-22

    Article  MathSciNet  Google Scholar 

  31. Newman MEJ (2006) Modularity and community structure in networks[J]. Proc Natl Acad Sci U S A 103(23):8577–8582

    Article  Google Scholar 

  32. Newman MEJ (2013) Spectral methods for community detection and graph partitioning[J]. Phys Rev E 88(4):042822–1-042822-10

    Article  Google Scholar 

  33. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks[J]. Phys Rev E 69(2):026113–1-026113-15

    Article  Google Scholar 

  34. Ning J et al (2018) A food source-updating information-guided artificial bee colony algorithm[J]. Neural Comput & Applic 30(3):775–787

    Article  Google Scholar 

  35. Papadakis H, Panagiotakis C, Fragopoulou P (2014) Distributed detection of communities in complex networks using synthetic coordinates[J]. Journal of Statistical Mechanics: Theory and Experiment 2014(3):P03013

    Article  Google Scholar 

  36. Power JD et al (2011) Functional network organization of the human brain[J]. Neuron 72(4):665–678

    Article  Google Scholar 

  37. Rahimi S, Abdollahpouri A, Moradi P (2017) A multi-objective particle swarm optimization algorithm for community detection in complex networks[J]. Swarm and Evolutionary Computation

  38. Reichardt J, Bornholdt S (2004) Detecting fuzzy community structures in complex networks with a Potts model[J]. Phys Rev Lett 93(21):218701–1-218701-4

    Article  Google Scholar 

  39. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations[J]. Neuroimage 52(3):1059–1069

    Article  Google Scholar 

  40. Rubinov M, Sporns O (2011) Weight-conserving characterization of complex functional brain networks[J]. Neuroimage 56(4):2068–2079

    Article  Google Scholar 

  41. Rudie JD et al (2013) Altered functional and structural brain network organization in autism[J]. NeuroImage: Clin 2:79–94

    Article  Google Scholar 

  42. Sporns O (2011) The human connectome: a complex network [J]. Ann N Y Acad Sci 1224(1):109–125

    Article  Google Scholar 

  43. Sporns O et al (2004) Organization, development and function of complex brain networks[J]. Trends Cogn Sci 8(9):418–425

    Article  Google Scholar 

  44. Tian L-P et al (2018) CASNMF: a converged algorithm for symmetrical nonnegative matrix factorization[J]. Neurocomputing 275:2031–2040

    Article  Google Scholar 

  45. Wang G, Shen Y, Luan E (2008) A measure of centrality based on modularity matrix[J]. Prog Nat Sci 18(8):1043–1047

    Article  Google Scholar 

  46. Wang Y et al. (2009) A clustering multi-objective evolutionary algorithm based on orthogonal and uniform design: 2927–2933

  47. Wu X et al (2018) GA-ADE: a novel approach based on graph algorithm to improves the detection of adverse drug events[J]. Multimed Tools Appl 77(3):3493–3507

    Article  Google Scholar 

  48. Zalesky A et al (2012) Connectivity differences in brain networks[J]. Neuroimage 60(2):1055–1062

    Article  Google Scholar 

  49. Zhang J, Wang Y, Feng J (2013) Attribute index and uniform design based multiobjective association rule mining with evolutionary algorithm[J]. Sci World J 2013(2013):1–16

    Google Scholar 

  50. Zhang J, Wang Y, Feng J (2014) A hybrid clustering algorithm based on PSO with dynamic crossover[J]. Soft Comput 18(5):961–979

    Article  Google Scholar 

  51. Zheng W et al (2018) Dynamic graph learning for spectral feature selection[J]. Multimed Tools Appl 77(22):29739–29755

    Article  Google Scholar 

  52. Zhou X, Zhao X, Liu Y (2018) A multiobjective discrete bat algorithm for community detection in dynamic networks[J]. Appl Intell : 1–13

  53. Zhu X, Zhang J, Feng J (2015) Multi-objective particle swarm optimization based on PAM and uniform design[J]. Math Probl Eng 2015(2):1–17

    Google Scholar 

  54. Zhu X et al (2017) Graph PCA hashing for similarity search[J]. IEEE Trans Multimed 19(9):2033–2044

    Article  Google Scholar 

  55. Zhu X, et al. (2018) One-step multi-view spectral clustering[J]. IEEE Trans Knowl Data Eng, .

  56. Zhu X et al. (2018) Low-rank sparse subspace for spectral clustering[J]. IEEE Trans Knowl Data Eng: 1–12

  57. Zhu X et al (2018) Local and global structure preservation for robust unsupervised spectral feature selection[J]. IEEE Trans Knowl Data Eng 30(3):517–529

    Article  Google Scholar 

  58. Zhu X et al (2019) A hybrid clustering algorithm for identifying cell types from single-cell RNA-Seq data[J]. Genes 10(2):98. https://doi.org/10.3390/genes10020098

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (No.61841603, No. 61762087), Guangxi Natural Science Foundation (No. 2018JJA170050, No.2018JJA130028, No.2018JJA170175), Scientific Research Plan Projects of Shaanxi Education Department (No. 17JK0610), and Open Foundation for Guangxi Colleges and Universities Key Lab of Complex System Optimization and Big Data Processing (No. 2017CSOBDP0301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoshu Zhu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhu, X., Feng, J. et al. Finding community of brain networks based on artificial bee colony with uniform design. Multimed Tools Appl 78, 33297–33317 (2019). https://doi.org/10.1007/s11042-019-7472-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7472-0

Keywords

Navigation