Skip to main content
Log in

An adaptive fuzzy K-nearest neighbor approach for MR brain tumor image classification using parameter free bat optimization algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents an automatic diagnosis system for the tumor grade classification through magnetic resonance imaging (MRI). The diagnosis system involves a region of interest (ROI) delineation using intensity and edge magnitude based multilevel thresholding algorithm. Then the intensity and the texture attributes are extracted from the segregated ROI. Subsequently, a combined approach known as Fisher+ Parameter-Free BAT (PFreeBAT) optimization is employed to derive the optimal feature subset. Finally, a novel learning approach dubbed as PFree BAT enhanced fuzzy K-nearest neighbor (FKNN) is proposed by combining FKNN with PFree BAT for the classification of MR images into two categories: High and Low-Grade. In PFree BAT enhanced FKNN, the model parameters, i.e., neighborhood size k and the fuzzy strength parameter m are adaptively specified by the PFree BAT optimization approach. Integrating PFree BAT with FKNN enhances the classification capability of the FKNN. The diagnostic system is rigorously evaluated on four MR images datasets including images from BRATS 2012 database and the Harvard repository using classification performance metrics. The empirical results illustrate that the diagnostic system reached to ceiling level of accuracy on the test MR image dataset via 5-fold cross-validation mechanism. Additionally, the proposed PFree BAT enhanced FKNN is evaluated on the Parkinson dataset (PD) from the UCI repository having the pre-extracted feature space. The proposed PFree BAT enhanced FKNN reached to an average accuracy of 98% and 97.45%. with and without feature selection on PD dataset. Moreover, solely to contrast, the performance of the proposed PFree BAT enhanced FKNN with the existing FKNN variants the experimentations were also done on six other standard datasets from KEEL repository. The results indicate that the proposed learning strategy achieves the best value of accuracy in contrast to the existing FKNN variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amadasun M, King R (1989) Texural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19:1264–1274

    Article  Google Scholar 

  2. Arif M, Akram MU, others (2010) Pruned fuzzy K-nearest neighbor classifier for beat classification. J Biomed Sci Eng 3:380.

  3. Astrom F, Koker R (2011) A parallel neural network approach to prediction of Parkinson’s disease. Expert Syst Appl 38:12470–12474

    Article  Google Scholar 

  4. Bahadure NB, Ray AK, Thethi HP (2018) Comparative approach of MRI-based brain tumor segmentation and classification using genetic algorithm. J Digit Imaging 31:477–489

    Article  Google Scholar 

  5. Bakwad KM, Pattnaik SSSS, Sohi BS, et al (2009) Hybrid bacterial foraging with parameter free PSO. In: Nat. Biol. Inspired Comput. 2009. NaBIC 2009. World Congr. Ieee, pp 1077–1081

  6. Cai Z, Gu J, Wen C et al (2018) An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach. Comput Math Methods Med 2018:1–24

    Article  MATH  Google Scholar 

  7. Chen H-L, Yang B, Wang G et al (2011) A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method. Knowledge-Based Syst 24:1348–1359

    Article  Google Scholar 

  8. Chen H-L, Huang C-C, Yu X-G et al (2013) An efficient diagnosis system for detection of Parkinson’s disease using fuzzy k-nearest neighbor approach. Expert Syst Appl 40:263–271

    Article  Google Scholar 

  9. Chen H-L, Wang G, Ma C et al (2016) An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson′s disease. Neurocomputing 184:131–144

    Article  Google Scholar 

  10. Cheng M, Hoang N (2014) Groutability estimation of grouting processes with microfine cements using an evolutionary instance-based learning approach. J Comput Civ Eng 28:04014014

    Article  Google Scholar 

  11. Colominas MA, Schlotthauer G, Torres ME (2014) Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed Sign Proc Control 14:19–29

    Article  Google Scholar 

  12. Costa AF, Humpire-mamani G, Juci A, et al (2012) An Efficient Algorithm for Fractal Analysis of Textures. In: 25th SIBGRAPI Conf. Graph. Patterns Images. IEEE, Ouro Preto, Brazil, pp 39–46

  13. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21–27

    Article  MATH  Google Scholar 

  14. Das R (2010) A comparison of multiple classification methods for diagnosis of Parkinson disease. Expert Syst Appl 37:1568–1572

    Article  Google Scholar 

  15. Denoeux T (1995) A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans Syst Man Cybern 25:804–813

    Article  Google Scholar 

  16. Derrac J, Chiclana F, García S, Herrera F (2016) Evolutionary fuzzy k -nearest neighbors algorithm using interval-valued fuzzy sets. Inf Sci (Ny) 329:144–163

    Article  Google Scholar 

  17. Emblem KE, Nedregaard B, Hald JK et al (2009) Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging 30:1–10

    Article  Google Scholar 

  18. Fawcett T (2004) ROC graphs: notes and practical considerations for researchers. Mach Learn 31:1–38

    MathSciNet  Google Scholar 

  19. Georgiadis P, Cavouras D, Kalatzis I et al (2008) Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features. Comput Methods Prog Biomed 89:24–32

    Article  Google Scholar 

  20. Gibbs P, Turnbull LW (2003) Textural analysis of contrast-enhanced MR images of the breast. Magn Reson Med 50:92–98

    Article  Google Scholar 

  21. Guo P-F, Bhattacharya P, Kharma N (2010) Advances in detecting Parkinson’s disease. In: Int. Conf. Med. Biometrics. pp 306–314

  22. Gupta N, Bhatele P, Khanna P (2019) Glioma detection on brain MRIs using texture and morphological features with ensemble learning. Biomed Sign Proc Control 47:115–125

    Article  Google Scholar 

  23. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46:389–422

    Article  MATH  Google Scholar 

  24. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3:610–621

    Article  Google Scholar 

  25. Harvard Medical School. http://med.harvard.edu/AANLIB/. Accessed 2 Apr 2016

  26. Hemanth JD, Anitha J (2019) Modified genetic algorithm approaches for classification. Appl Soft Comput J 75:21–28

    Article  Google Scholar 

  27. Hemanth DJ, Vijila CKS, Selvakumar AI, Anitha J (2011) Performance Enhanced Hybrid Kohonen-Hopfield Neural Network for Abnormal Brain Image Classification. In: Signal Process. Image Process. Pattern Recognit. Springer, pp 356–365

  28. Herlidou-Meme S, Constans J, Carsin B et al (2003) MRI texture analysis on texture test objects, normal brain and intracranial tumors. Magn Reson Imaging 21:989–993

    Article  Google Scholar 

  29. Hong L, Wan Y, Jain A (1998) Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell 20:777–789

    Article  Google Scholar 

  30. Hu X, Xie C (2005) Improving fuzzy k-NN by using genetic algorithm. J Comput Inf Syst 1:203–213

    Google Scholar 

  31. Hui LY, Muftah M, Das T et al (2012) Classification of MR tumor images based on Gabor wavelet analysis. J Med Biol Eng 32:22–28

    Article  Google Scholar 

  32. Iftekharuddin KM, Zheng J, Islam MA, Ogg RJ (2009) Fractal-based brain tumor detection in multimodal MRI. Appl Math Comput 207:23–41

    MathSciNet  MATH  Google Scholar 

  33. Kaur T, Saini B, Gupta S (2017) Quantitative metric for MR brain tumor grade classification using sample space density measure of analytic intrinsic mode function representation. IET Image Process 11:620–632

    Article  Google Scholar 

  34. Kaur T, Saini BS, Gupta S (2018) A joint intensity and edge magnitude-based multilevel thresholding algorithm for the automatic segmentation of pathological MR brain images. Neural Comput Appl 30:1317–1340

    Article  Google Scholar 

  35. Kaur T, Saini BS, Gupta S (2018) A novel feature selection method for brain tumor MR image classification based on the fisher criterion and parameter-free bat optimization. Neural Comput Appl 29:193–206

    Article  Google Scholar 

  36. Keller JM, Gray MR (1985) A fuzzy K-nearest neighbor algorithm. IEEE Trans Syst Man Cybern SMC-15:580–585

    Article  Google Scholar 

  37. Kucnehva LI (1995) An intuitionistic fuzzy k-nearest neighbors rule.

  38. Lahmiri S (2017) Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques. Biomed Sign Proc Control 31:148–155

    Article  Google Scholar 

  39. Lee S-H (2015) Feature selection based on the center of gravity of BSWFMs using NEWFM. Eng Appl Artif Intell 45:482–487

    Article  Google Scholar 

  40. Lee MC, Nelson SJ (2008) Supervised pattern recognition for the prediction of contrast-enhancement appearance in brain tumors from multivariate magnetic resonance imaging and spectroscopy. Artif Intell Med 43:61–74

    Article  Google Scholar 

  41. Leng L, Zhang J, Xu J, et al (2010) Dynamic weighted discrimination power analysis in DCT domain for face and palmprint recognition. In: Inf. Commun. Technol. Converg. (ICTC), 2010 Int. Conf. pp 467–471

  42. Leng L, Zhang J, Xu J, et al (2010) Dynamic weighted discrimination power analysis: A novel approach for face and palmprint recognition in DCT domain. In: Int. J. Phys. Sci. pp 467–471

  43. Leng L, Zhang J, Chen G, et al (2011) Two-directional two-dimensional random projection and its variations for face and palmprint recognition. In: Int. Conf. Comput. Sci. Its Appl. pp 458–470

  44. Leng L, Zhang S, Bi X, Khan MK (2012) Two-dimensional cancelable biometric scheme. In: 2012 Int. Conf. Wavelet Anal. Pattern Recognit. pp 164–169

  45. Leng L, Li M, Teoh ABJ 2013) Conjugate 2D palmhash code for secure palm-print-vein verification. In: Image Signal Process. (CISP), 2013 6th Int. Congr. pp 1705–1710

  46. Leng L, Li M, Kim C, Bi X (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition. Multimed Tools Appl 76:333–354

    Article  Google Scholar 

  47. Li Z, Tang J (2015) Unsupervised feature selection via nonnegative spectral analysis and redundancy control. IEEE Trans Image Process 24:5343–5355

    Article  MathSciNet  MATH  Google Scholar 

  48. Li D-C, Liu C-W, Hu SC (2011) A fuzzy-based data transformation for feature extraction to increase classification performance with small medical data sets. Artif Intell Med 52:45–52

    Article  Google Scholar 

  49. Little MA, McSharry PE, Hunter EJ et al (2009) Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans Biomed Eng 56:1015–1022

    Article  Google Scholar 

  50. Liu DY, Chen HL, Yang B et al (2012) Design of an enhanced fuzzy k-nearest neighbor classifier based computer aided diagnostic system for thyroid disease. J Med Syst 36:3243–3254

    Article  Google Scholar 

  51. Liu Y, Nie L, Han L, et al (2015) Action2Activity: Recognizing Complex Activities from Sensor Data. In: IJCAI. pp 1617–1623

  52. Lu S, Qiu X, Shi J et al (2017) A pathological brain detection system based on extreme learning machine optimized by bat algorithm. CNS Neurol Disord Targets (Formerly Curr Drug Targets-CNS Neurol Disord) 16:23–29

    Article  Google Scholar 

  53. Luukka P (2011) Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst Appl 38:4600–4607

    Article  Google Scholar 

  54. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579

    MathSciNet  MATH  Google Scholar 

  55. Mahmoud-Ghoneim D, Toussaint G, Constans J-M, de Certaines JD (2003) Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn Reson Imaging 21:983–987

    Article  Google Scholar 

  56. Materka A, Strzelecki M (1998) Texture analysis methods--a review. Tech. Univ. lodz, Inst. Electron. COST B11 report, Brussels

  57. Meng X-B, Gao XZ, Liu Y, Zhang H (2015) A novel bat algorithm with habitat selection and Doppler effect in echoes for optimization. Expert Syst Appl 42:6350–6364

    Article  Google Scholar 

  58. Menze BH, Jakab A, Bauer S et al (2014) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024

    Article  Google Scholar 

  59. Nayak DR, Dash R, Majhi B et al (2016) Brain MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 177:188–197

    Article  Google Scholar 

  60. Nayak DR, Dash R, Majhi B (2018) Discrete ripplet-II transform and modified PSO based improved evolutionary extreme learning machine for pathological brain detection. Neurocomputing 282:232–247

    Article  Google Scholar 

  61. Ozcift A, Gulten A (2011) Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput Methods Prog Biomed 104:443–451

    Article  Google Scholar 

  62. Psorakis I, Damoulas T, Girolami MA (2010) Multiclass relevance vector machines: sparsity and accuracy. IEEE Trans Neural Netw 21:1588–1598

    Article  Google Scholar 

  63. Rakotomamonjy A (2003) Variable selection using SVM-based criteria. J Mach Learn Res 3:1357–1370

    MathSciNet  MATH  Google Scholar 

  64. Ramana Murthy G, Senthil Arumugam M, Loo CK (2009) Hybrid particle swarm optimization algorithm with fine tuning operators. Int J Bio-Inspired Comput 1:14–31

    Article  Google Scholar 

  65. Rhee F-H, Hwang C (2003) An interval type-2 fuzzy K-nearest neighbor. In: fuzzy Syst. 2003. FUZZ’03. 12th IEEE Int. Conf. Pp 802–807

  66. Sachdeva J, Kumar V, Gupta I et al (2012) A novel content-based active contour model for brain tumor segmentation. Magn Reson Imaging 30:694–715

    Article  Google Scholar 

  67. Sachdeva J, Kumar V, Gupta I et al (2013) Segmentation, feature extraction, and multiclass brain tumor classification. J Digit Imaging 26:1141–1150

    Article  Google Scholar 

  68. Sachdeva J, Kumar V, Gupta I et al (2016) A package-SFERCB-“segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors”. Appl Soft Comput 47:151–167

    Article  Google Scholar 

  69. Sakar CO, Kursun O (2010) Telediagnosis of Parkinson’s disease using measurements of dysphonia. J Med Syst 34:591–599

    Article  Google Scholar 

  70. Shahbaba B, Neal R (2009) Nonlinear models using Dirichlet process mixtures. J Mach Learn Res 10:1829–1850

    MathSciNet  MATH  Google Scholar 

  71. Shrivastava P, Shukla A, Vepakomma P et al (2017) A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease. Comput Methods Prog Biomed 139:171–179

    Article  Google Scholar 

  72. Skogen K, Schulz A, Dormagen JB et al (2016) Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Eur J Radiol 85:824–829

    Article  Google Scholar 

  73. Spadoto AA, Guido RC, Carnevali FL, et al (2011) Improving Parkinson’s disease identification through evolutionary-based feature selection. In: 2011 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. pp 7857–7860

  74. Subashini MM, Sahoo SK, Sunil V, Easwaran S (2016) A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst Appl 43:186–196

    Article  Google Scholar 

  75. Subashini MM, Sahoo SK, Sunil V, Easwaran S (2016) A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst Appl 43:186–196

    Article  Google Scholar 

  76. Tang X (1998) Texture information in run-length matrices. IEEE Trans Image Process 7:1602–1609

    Article  Google Scholar 

  77. Tencer L, Reznakova M, Cheriet M (2012) A new framework for online sketch-based image retrieval in web environment. In: Inf. Sci. Signal Process. their Appl. Spec. Sess. IEEE, Montreal, QC, pp 1430–1431

  78. Tien Bui D, Nguyen QP, Hoang ND, Klempe H (2016) A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides 14:1–17

    Article  Google Scholar 

  79. Vidya KS, Ng EY, Acharya UR et al (2015) Computer-aided diagnosis of myocardial infarction using ultrasound images with DWT, GLCM and HOS methods: a comparative study. Comput Biol Med 62:86–93. https://doi.org/10.1016/j.compbiomed.2015.03.033

    Article  Google Scholar 

  80. Wagner F, Gryanik A, Schulz-Wendtland R et al (2012) 3D characterization of texture: evaluation for the potential application in mammographic mass diagnosis. Biomed Eng (NY) 57:490–493

    Google Scholar 

  81. Wang S, Kim S, Chawla S et al (2010) Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging. Neuroimage 44:653–660

    Article  Google Scholar 

  82. Wang S, Zhang Y, Dong Z et al (2015) Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. Int J Imaging Syst Technol 25:153–164

    Article  Google Scholar 

  83. Xu Y, van Beek EJR, Hwanjo Y et al (2006) Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). Acad Radiol 13:969–978

    Article  Google Scholar 

  84. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nat. inspired Coop. Strateg. Optim. (NICSO 2010). Springer, pp 65–74

  85. Yang M-S, Chen C-H (1998) On the edited fuzzy K-nearest neighbor rule. IEEE Trans Syst Man, Cybern Part B 28:461–466

    Article  Google Scholar 

  86. Yang X-S, Deb S (2009) Cuckoo search via Levy flights. In: Nat. Biol. Inspired Comput. 2009. NaBIC 2009. World Congr. pp 210–214

  87. Yang X-S, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1:330–343

    MATH  Google Scholar 

  88. Yang G, Zhang Y, Yang J et al (2016) Automated classification of brain images using wavelet-energy and biogeography-based optimization. Multimed Tools Appl 75:15601–15617

    Article  Google Scholar 

  89. Yilmaz S, Kucuksille EU (2015) A new modification approach on bat algorithm for solving optimization problems. Appl Soft Comput 28:259–275

    Article  Google Scholar 

  90. Zacharaki EI, Wang S, Chawla S, Soo D (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62:1609–1618

    Article  Google Scholar 

  91. Zhang Y, Wang S, Ji G, Dong Z (2013) An MR brain images classifier system via particle swarm optimization and kernel support vector machine. Sci World J 2013

  92. Zhang Y-D, Jiang Y, Zhu W et al (2018) Exploring a smart pathological brain detection method on pseudo Zernike moment. Multimed Tools Appl 77:22589–22604

    Article  Google Scholar 

  93. Zollner FG, Emblem KE, Schad LR (2012) SVM-based glioma grading: optimization by feature reduction analysis. J Med Phys 22:205–214

    Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taranjit Kaur.

Ethics declarations

Conflict of interest

‘None Declared’.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Saini, B.S. & Gupta, S. An adaptive fuzzy K-nearest neighbor approach for MR brain tumor image classification using parameter free bat optimization algorithm. Multimed Tools Appl 78, 21853–21890 (2019). https://doi.org/10.1007/s11042-019-7498-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7498-3

Keywords

Navigation