Skip to main content
Log in

Distinctive image features from illumination and scale invariant keypoints

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel local feature descriptor of the image, which is named iSIFT (illumination and Scale Invariant Feature Transform), based on SIFT (Scale Invariant Feature Transform) improved by LBP (Local Binary Pattern), in order to combine the robustness advantages of LBP descriptor for illumination change and that of SIFT for scaling. It addresses the following problems: (1) SIFT algorithm is poor in describing the local feature extraction from an image when lighting condition changes; (2) SIFT algorithm cannot accurately extract the feature points or can only extract only few of them from the blurred image and the image of an object with smooth edges. Each of the scale-space representation, namely, L(x, y, kσ), in Gaussian pyramid of the image I(x, y) on SIFT descriptor is calculated by using LBP in order to obtain the corresponding LBP image, which is denoted by LBP(L(x, y, )). The obtained LBP(L(x, y, )) replaces the original corresponding scale-space representation L(x, y, ) to construct the LBP-Gaussian pyramid, and the difference between each two neighboring LBP(L(x, y, )) in LBP-Gaussian pyramid is used to replace the original DoG pyramid in SIFT descriptor to detect extreme points. The results of the experiments suggest that iSIFT descriptor improves the precision of image feature matching and the robustness under changed lighting conditions compared with that of SIFT algorithm, and iSIFT descriptor can extract more feature points from the blurred image and the image with smooth edges as well as having stronger robustness for lighting, rotation and scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Aanæs H, Dahl AL, Pedersen KS (2012) Interesting interest points. IJCV 97:18–35

    Article  Google Scholar 

  2. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns. Computer Vision - ECCV 2004, p 469–481

  3. Bai S, Hou J, Ohnishi N (2016) Scene categorization through combining LBP and SIFT features effectively. Int J Pattern Recognit Artif Intell 30(01)

  4. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. Proceedings of the ninth European Conference on Computer Vision

  5. Cheng MM (2014) et al BING: binarized normed gradients for objectness estimation at 300fps. IEEE Conference on Computer Vision and Pattern Recognition IEEE Computer Society, p 3286–3293

  6. Cheng MM et al (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

  7. Gonzalez RC, Woods RE, Eddins SL (2003) Digital image processing using MATLAB. Prentice Hall, New Jersey Chapter 11

    Google Scholar 

  8. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42:425–436

    Article  MATH  Google Scholar 

  9. Kabbai L, Azaza A, Abdellaoui M, Douik A (2015) Image matching based on LBP and SIFT descriptor, 2015 IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15), Mahdia, p 1–6. https://doi.org/10.1109/SSD.2015.7348116.

  10. Koenderink J, van Doorn A (1987) Representation of local geometry in the visual system. Biol Cybern 3:383–396

    MathSciNet  MATH  Google Scholar 

  11. Koenderink J, van Doorn A (1992) Generic neighbourhood operators. IEEE Trans Pattern Anal Mach Intell 14:597–605

    Article  Google Scholar 

  12. Li Q, Ji H (2013) Multimodality image registration using local linear embedding and hybrid entropy. Neurocomputing 111(6):34–42

    Article  Google Scholar 

  13. Li X, Shen C, Dick A et al (2013) Learning compact binary codes for visual tracking. Proc IEEE Conf Comput Vis Pattern Recognit:2419–2426

  14. Lindeberg T (1994) Scale-space theory: a basic tool for analysing structures at different scales. J Appl Stat 21:224–270

    Article  Google Scholar 

  15. Lindeberg T (1994) Scale-space theory in computer vision. Kluwer Academic Publishers, Dordrecht ISBN 0-7923-9418-6

    Book  MATH  Google Scholar 

  16. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):79–116. https://doi.org/10.1023/A:1008045108935

    Article  Google Scholar 

  17. Lindeberg T (2012) Scale invariant feature transform. Scholarpedia 7(5):10491. https://doi.org/10.4249/scholarpedia.10491

    Article  Google Scholar 

  18. Lindeberg T (2013) A computational theory of visual receptive fields. Biol Cybern 107(6):589–635

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindeberg T (2013) Generalized axiomatic scale-space theory. Advances Imaging Electron Phys 178:1–96

  20. Lindeberg T (2013) Invariance of visual operations at the level of receptive fields. PLoS One 8(7):e66990

    Article  Google Scholar 

  21. T. Lindeberg (2014) "Scale selection". Computer Vision: A Reference Guide In: Ikeuchi K (eds) Springer, Berlin, 701–713.

  22. Lowe DG (1999) Object recognition from local scale-invariant features. Proceedings of the International Conference on Computer Vision. p 1150–1157.

  23. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  24. Ma J, Zhao J, Tian J, Yuille A, Zhuowen T (2014) Robust point matching via vector field consensus. IEEE Trans Image Process 23(4):1706–1721

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma J, Zhou H, Zhao J, Gao Y, Jiang J, Tian J (2015) Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans Geosci Remote Sens 53(12):6469–6481

    Article  Google Scholar 

  26. Ma J, Qiu W, Zhao J, Ma Y, Yuille AL, Tu Z (2015) Robust L2E estimation of transformation for non-rigid registration. IEEE Trans Signal Process 63(5):1115–1129

    Article  MathSciNet  MATH  Google Scholar 

  27. Mikolajczyk KI, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  28. Nistér D, Stewénius H (2006) Scalable recognition with a vocabulary tree. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, p 2161–2168

  29. Nister D, Stewenius H (2008) Linear time maximally stable extremal regions. Lecture Notes in Computer Science. 10th European Conference on Computer Vision, Marseille, France, no. 5303, p 183–196.

  30. Ojala T, Pietikäinen M, Harwood D (1994) Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. Proceedings of the 12th IAPR International Conference on Pattern Recognition (ICPR 1994), vol. 1, p 582–585

  31. Ojala T, Pietikäinen M, Mäenpää T (2000) Gray scale and rotation invariant texture classification with local binary patterns. In: Proceedings of the 6th European Conference on Computer Vision-Part I. Springer-Verlag, p 404–420

  32. Davarzani R et al (2015) Scale- and rotation-invariant texture description with improved local binary pattern features. Signal Process 111:274–293

  33. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  34. Rosten E, Drummond T (2005) Fusing points and lines for high performance tracking. Proceedings of the IEEE International Conference on Computer Vision, Vol. 2, p 1508–1511

  35. Rothe R, Guillaumin M, Gool LV (2015) Non-maximum suppression for object detection by passing messages between windows. Computer Vision -- ACCV 2014. Springer International Publishing, p 290–306

  36. Rublee E, Rabaud V, Konolige K, Bradski G (2011) Orb: an efficient alternative to sift or surf. In: 2011 IEEE Int. Conf. Computer Vision (ICCV), p 2564–2571

  37. Shannon CE (1948) A mathematical theory of communication. Bell Labs Tech J 5(4):3–55

    Google Scholar 

  38. Sheikh HR, Bovik AC (2006) Image information and visual quality. IEEE Trans Image Process 15:430–444

    Article  Google Scholar 

  39. Silva C, Bouwmans T, Frelicot C (2015) An extended center-symmetric local binary pattern for background modeling and subtraction in videos", VISAPP 2015, Berlin, Germany

  40. Tian T et al (2014) A zoned image patch permutation descriptor. IEEE Signal Process Lett 22(6):728–732

    Article  Google Scholar 

  41. Vedaldi A, Fulkerson B (2010) VLFeat-An open and portable library of computer vision algorithms[J]. Proceedings of ACM Multimedia. http://www.vlfeat.org/overview/dsift.html.

  42. Xu X, Zhao Y (2015) Multimodal face recognition for profile views based on SIFT and LBP". Face and Facial Expression Recognition from Real World Videos: International Workshop, Stockholm, Sweden, August 24, 2014, Revised Selected Papers, Springer International Publishing

  43. Yang C, et al (2015) Pedestrian Detection in Thermal Infrared Image Using Extreme Learning Machine. Proceedings of ELM-2014 Volume 2. Springer International Publishing, p 31–40

  44. Yi KM et al. (2016) LIFT: learned invariant feature transform. European Conference on Computer Vision, Springer, Cham, p 467–483

  45. Yu J, Qin Z, Wan T, Zhang X (2013) Feature integration analysis of bag-of-features model for image retrieval. Neurocomputing. 120:355–364

    Article  Google Scholar 

  46. Yuan X, Yu J, Qiny Z, Wan T (2011) A SIFT-LBP image retrieval model based on bag-of-features, 18th IEEE International Conference on Image Processing (ICIP)

  47. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang L, et al (2012) A comprehensive evaluation of full reference image quality assessment algorithms. 1477–1480

  49. Zhao D, et al (2015) A novel improved binarized normed gradients based objectness measure through the multi-feature learning. International Conference on Image and Graphics. Springer International Publishing, p 307–320

  50. Zhou W, Bovik AC, Sheikh HR, Simoncelli EP (April 2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61173091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoliang Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, G., Liu, Z. & Xiong, J. Distinctive image features from illumination and scale invariant keypoints. Multimed Tools Appl 78, 23415–23442 (2019). https://doi.org/10.1007/s11042-019-7566-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7566-8

Keywords

Navigation