Skip to main content
Log in

Dynamic background modeling using intensity and orientation distribution of video sequence

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Moving object detection in a video sequence is a challenging task in presence of dynamic background. In this paper, we propose a novel approach for background modeling by exploiting orientated patterns present in a video scene. Based on the observation that there exists a difference in directional edge patterns between foreground and background, we use the statistical measures of the orientation of texture via two angle co-occurrence matrices (ACMs). Orientation based features extracted from ACMs are then clubbed with intensity distribution-based features extracted from well-known gray level co-occurrence matrix (GLCM) to model the dynamic background. The model is then used to classify pixels within a video frame into background and foreground. Experimental results on a diverse set of video sequences have shown the effectiveness of the proposed method over competing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. https://www.microsoft.com/en-us/research/people/jckrumm/

  2. http://scenebackgroundmodeling.net/

  3. https://sites.google.com/site/backgroundsubtraction/test-sequences

  4. http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

  5. Berjon D, Cuevas C, Moran F, Garcia N (2013) Gpu-based implementation of an optimized nonparametric background modeling for real-time moving object detection. IEEE Trans Consum Electron 59(2):361–369

    Article  Google Scholar 

  6. Bouwmans T (2011) Recent advanced statistical background modeling for foreground detection-a systematic survey. Recent Patents on Computer Science 4(3):147–176

    Google Scholar 

  7. Bouwmans T (2014) Traditional and recent approaches in background modeling for foreground detection: an overview. Computer Science Review 11:31–66

    Article  MATH  Google Scholar 

  8. Butler DE, Bove VM, Sridharan S (2005) Real-time adaptive foreground/background segmentation. EURASIP Journal on Advances in Signal Processing 2005(14):841,926

    Article  MATH  Google Scholar 

  9. Candès EJ, Li X, Ma Y, Wright J (2011) Robust principal component analysis. J ACM (JACM) 58(3):11

    Article  MathSciNet  MATH  Google Scholar 

  10. Chakraborty J, Midya A, Rabidas R (2018) Computer-aided detection and diagnosis of mammographic masses using multi-resolution analysis of oriented tissue patterns. Expert Syst Appl 99:168–179

    Article  Google Scholar 

  11. Chakraborty J, Rangayyan RM, Banik S, Mukhopadhyay S, Desautels JEL (2012) Detection of architectural distortion in prior mammograms using statistical measures of orientation of texture

  12. Chakraborty J, Rangayyan RM, Banik S, Mukhopadhyay S, Desautels JL (2012) Statistical measures of orientation of texture for the detection of architectural distortion in prior mammograms of interval-cancer. J Electron Imaging 21(3):033,010–1

    Article  Google Scholar 

  13. Cheung SCS, Kamath C (2005) Robust background subtraction with foreground validation for urban traffic video. EURASIP Journal on Advances in Signal Processing 2005(14):726,261

    Article  MATH  Google Scholar 

  14. Chiranjeevi P, Sengupta S (2011) Moving object detection in the presence of dynamic backgrounds using intensity and textural features. J Electron Imaging 20(4):043,009–043,009

    Article  Google Scholar 

  15. Chiranjeevi P, Sengupta S (2012) New fuzzy texture features for robust detection of moving objects. IEEE Signal Process Lett 19(10):603–606

    Article  Google Scholar 

  16. Chiranjeevi P, Sengupta S (2014) Detection of moving objects using multi-channel kernel fuzzy correlogram based background subtraction. IEEE Transactions on Cybernetics 44(6):870–881

    Article  Google Scholar 

  17. Culibrk D, Marques O, Socek D, Kalva H, Furht B (2007) Neural network approach to background modeling for video object segmentation. IEEE Trans Neural Netw 18(6):1614–1627

    Article  Google Scholar 

  18. Elgammal A, Duraiswami R, Harwood D, Davis LS (2002) Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc IEEE 90(7):1151–1163

    Article  Google Scholar 

  19. Elgammal A, Harwood D, Davis L (2000) Non-parametric model for background subtraction. Computer Vision ECCV 2000, pp 751–767

  20. Farcas D, Marghes C, Bouwmans T (2012) Background subtraction via incremental maximum margin criterion: a discriminative subspace approach. Mach Vis Appl 23(6):1083–1101

    Article  Google Scholar 

  21. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  22. Heikkila M, Pietikainen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28 (4):657–662

    Article  Google Scholar 

  23. Hsia CH, Guo JM (2014) Efficient modified directional lifting-based discrete wavelet transform for moving object detection. Signal Process 96:138–152

    Article  Google Scholar 

  24. Huang J, Zhang T, Metaxas D (2011) Learning with structured sparsity. J Mach Learn Res 12(Nov):3371–3412

    MathSciNet  MATH  Google Scholar 

  25. Jalal AS, Singh V (2014) A framework for background modelling and shadow suppression for moving object detection in complex wavelet domain. Multimed Tools Appl 73(2):779–801

    Article  Google Scholar 

  26. Javed S, Mahmood A, Bouwmans T, Jung SK (2016) Spatiotemporal low-rank modeling for complex scene background initialization. IEEE Transactions on Circuits and Systems for Video Technology

  27. Jodoin PM, Maddalena L, Petrosino A, Wang Y (2017) Extensive benchmark and survey of modeling methods for scene background initialization. IEEE Trans Image Process 26(11):5244–5256

    Article  MathSciNet  MATH  Google Scholar 

  28. Jodoin PM, Mignotte M, Konrad J (2007) Statistical background subtraction using spatial cues. IEEE Trans Circuits Syst Video Technol 17(12):1758–1763

    Article  Google Scholar 

  29. Karasulu B, Korukoglu S (2013) Moving object detection and tracking in videos. In: Performance Evaluation Software, pp 7–30

  30. Karpagavalli P, Ramprasad A (2017) An adaptive hybrid gmm for multiple human detection in crowd scenario. Multimed Tools Appl 76(12):14,129–14,149

    Article  Google Scholar 

  31. Kim H, Sakamoto R, Kitahara I, Toriyama T, Kogure K (2007) Robust foreground extraction technique using gaussian family model and multiple thresholds. In: Asian Conference on Computer Vision, pp 758–768

  32. Kim K, Chalidabhongse TH, Harwood D, Davis L (2004) Background modeling and subtraction by codebook construction. In: IEEE International Conference on Image Processing, vol 5. pp 3061–3064

  33. Kim K, Chalidabhongse TH, Harwood D, Davis L (2004) Background modeling and subtraction by codebook construction. In: Conference on Image Processing, vol 5. pp 3061–3064

  34. Kim W, Kim C (2012) Background subtraction for dynamic texture scenes using fuzzy color histograms. IEEE Signal Process Lett 19(3):127–130

    Article  Google Scholar 

  35. Lee B, Hedley M (2002) Background estimation for video surveillance. In: Image and Vision Computing, pp 315–320

  36. Lin HH, Liu TL, Chuang JH (2002) A probabilistic svm approach for background scene initialization. In: International Conference on Image Processing, vol 3. IEEE, pp 893–896

  37. Lipton AJ, Fujiyoshi H, Patil RS (1998) Moving target classification and tracking from real-time video. In: Fourth IEEE Workshop on Aplications of Computer Vision, pp 8–14

  38. Liu C, Yuen PC, Qiu G (2009) Object motion detection using information theoretic spatio-temporal saliency. Pattern Recogn 42(11):2897–2906

    Article  MATH  Google Scholar 

  39. Luque RM, López-rodríguez D, Merida-Casermeiro E, Palomo EJ (2008) Video object segmentation with multivalued neural networks. In: Eighth international conference on hybrid intelligent systems, IEEE, pp 613–618

  40. Marghes C, Bouwmans T, Vasiu R (2012) Background modeling and foreground detection via a reconstructive and discriminative subspace learning approach. In: International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV), p 1. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp)

  41. McIvor AM (2000) Background subtraction techniques. Proc of Image and Vision Computing 4:3099–3104

    Google Scholar 

  42. Midya A, Chakraborty J, Gönen M, Do RKG, Simpson AL (2018) Influence of ct acquisition and reconstruction parameters on radiomic feature reproducibility. J Med Imaging 5(1):5–5–15

    Article  Google Scholar 

  43. Pak LM, Chakraborty J, Gonen M, Chapman WC, Do RK, Koerkamp BG, Verhoef K, Lee SY, Massani M, van der Stok EP, Simpson AL (2018) Quantitative imaging features and postoperative hepatic insufficiency: A multi-institutional expanded cohort. Journal of the American College of Surgeons

  44. Paragios N, Deriche R (2000) Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans Pattern Anal Mach Intell 22 (3):266–280

    Article  Google Scholar 

  45. Seki M, Wada T, Fujiwara H, Sumi K (2003) Background subtraction based on cooccurrence of image variations. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 2. IEEE, pp II–II.

  46. Sheikh Y, Shah M (2005) Bayesian modeling of dynamic scenes for object detection. IEEE Trans Pattern Anal Mach Intell 27(11):1778–1792

    Article  Google Scholar 

  47. Sobral A, Vacavant A (2014) A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput Vis Image Underst 122:4–21

    Article  Google Scholar 

  48. Stauffer C, Grimson WEL (1999) Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 2. pp 246–252

  49. Tavakkoli A, Ambardekar A, Nicolescu M, Louis S (2007) A genetic approach to training support vector data descriptors for background modeling in video data. In: International Symposium on Visual Computing, pp 318–327

  50. Tezuka H, Nishitani T (2008) A precise and stable foreground segmentation using fine-to-coarse approach in transform domain. In: 15Th IEEE International Conference on Image Processing, pp 2732–2735

  51. Tian Y, Senior A, Lu M (2012) Robust and efficient foreground analysis in complex surveillance videos. Mach Vis Appl 23(5):967–983

    Article  Google Scholar 

  52. Tibshirani R (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pp 267–288

  53. Toyama K, Krumm J, Brumitt B, Meyers B (1999) Wallflower: Principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol 1, pp 255–261

  54. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  55. Wren CR, Azarbayejani A, Darrell T, Pentland AP (1997) Pfinder: Real-time tracking of the human body. IEEE Trans Pattern Anal Mach Intell 19(7):780–785

    Article  Google Scholar 

  56. Wren CR, Porikli F (2005) Waviz: Spectral similarity for object detection. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp 55–61

  57. Xiao M, Han C, Kang X (2006) A background reconstruction for dynamic scenes. In: 9th International Conference on Information Fusion, pp 1–7

  58. Xu Y, Dong J, Zhang B, Xu D (2016) Background modeling methods in video analysis: a review and comparative evaluation. CAAI Transactions on Intelligence Technology 1(1):43–60

    Article  Google Scholar 

  59. Yang L, Li J, Luo Y, Zhao Y, Cheng H, Li J (2018) Deep background modeling using fully convolutional network. IEEE Trans Intell Transp Syst 19(1):254–262

    Article  Google Scholar 

  60. Zhang R, Zhang S, Yu S (2007) Moving objects detection method based on brightness distortion and chromaticity distortion. IEEE Transactions on Consumer Electronics 53(3)

  61. Zhang S, Yao H, Liu S, Chen X, Gao W (2008) A covariance-based method for dynamic background subtraction. In: 19Th International Conference on Pattern Recognition, pp 1–4

  62. Zheng J, Chakraborty J, Chapman WC, Gerst S, Gonen M, Pak LM, Jarnagin WR, DeMatteo RP, Do RK, Simpson AL (2018) Preoperative prediction of microvascular invasion in hepatocellular carcinoma using quantitative image analysis. J Am Coll Surg 225(6):778–788.e1

    Article  Google Scholar 

  63. Zheng J, Wang Y, Nihan N, Hallenbeck M (2006) Extracting roadway background image: mode-based approach. Transportation Research Record: Journal of the Transportation Research Board (1944), 82–88

  64. Zivkovic Z (2004) Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, vol 2. pp 28–31

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhittwikraj Moudgollya.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moudgollya, R., Midya, A., Sunaniya, A.K. et al. Dynamic background modeling using intensity and orientation distribution of video sequence. Multimed Tools Appl 78, 22537–22554 (2019). https://doi.org/10.1007/s11042-019-7575-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7575-7

Keywords

Navigation