
ar
X

iv
:1

90
1.

09
29

4v
1 

 [
cs

.L
G

] 
 2

7 
Ja

n 
20

19

Noname manuscript No.
(will be inserted by the editor)

Anomaly detecting and ranking of the cloud

computing platform by multi-view learning

Jing Zhang

Received: date / Accepted: date

Abstract Anomaly detecting as an important technical in cloud computing
is applied to support smooth running of the cloud platform. Traditional de-
tecting methods based on statistic, analysis, etc. lead to the high false-alarm
rate due to non-adaptive and sensitive parameters setting. We presented an
online model for anomaly detecting using machine learning theory. However,
most existing methods based on machine learning linked all features from
difference sub-systems into a long feature vector directly, which is difficult
to both exploit the complement information between sub-systems and ignore
multi-view features enhancing the classification performance. Aiming to this
problem, the proposed method automatic fuses multi-view features and op-
timize the discriminative model to enhance the accuracy. This model takes
advantage of extreme learning machine (ELM) to improve detection efficiency.
ELM is the single hidden layer neural network, which is transforming iterative
solution of the output weights to solution of linear equations and avoiding
the local optimal solution. Moreover, we rank anomies according to the rela-
tionship between samples and the classification boundary, and then assigning
weights for ranked anomalies, retraining the classification model finally. Our
method exploits the complement information between sub-systems sufficiently,
and avoids the influence from imbalance dataset, therefore, deal with various
challenges from the cloud computing platform. We deploy the privately cloud
platform by Openstack, verifying the proposed model and comparing results
to the state-of-the-art methods with better efficiency and simplicity.
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1 Introduction

Cloud computing makes possible auto-scaling and using resources at all time,
moreover, avoid waste or out of expectation when developers deploy applica-
tions[1, 2]. However, multiple anomalies in the cloud platform become both
the major bottleneck for high available and the primary cause to impede de-
velopment, it is important to how to build efficient anomaly detecting models.
Previous studies in anomaly detecting focus on statistical analysis of running
curve, which is computing and comparing curves and setting the threshold val-
ues to find anomalies by operators. The kind of methods produces both low ac-
curacy and the high false alarm ratio due to adjust parameters by manually in
unknown data distribution. Therefore, the anomaly detecting problem in cloud
computing is often formulated as a data association problem based on machine
learning. Machine learning models that contains data drive, non-linear fitting
and incremental provide preconditions for the problem of detection defining
and solving.

In detecting-by-learning techniques, the performance depends on ten detec-
tion accuracy and the challenge from the high-dimension vector that consists
of multiple sub-systems [3]. Information redundancy and noisy from differ-
ent features will result in failures of detecting. Therefore, feature extraction
and dimensionality reduction as efficient means enhance the detecting perfor-
mance in cloud computing based on virtualization. Sub-space learning extracts
principal features by building the optimum projection space such as principal
component analysis (PCA) [4], locality preserving projections (LPP) [5], linear
discriminant analysis (LDA) [6]. In order to improve expression of features,
independent component analysis (ICA) [7] is proposed. Robust dimensionality
reduction methods by sparse representation and low-rank learning including
robust PCA model [8], sub-space recover model [9], etc. Above methods are
applied in information selection in cloud computing due to both high-integrity
date description and high-effective computing. Guan, etc. exploit PCA to ob-
tain the most relevant components, and then adaptive kalman filter (AKF)
regard as classifier to enhance the detecting performance [10]. Fu, etc., uti-
lize PAC to extract features of the cloud platform, which is different to the
research from Guan, and it is selecting features in indicator vectors by mu-
tual information method, and then extracting the most important features on
selected features based on PCA [11]. Lan, etc., analyze in such a way as to
distinguish between PCA and ICA in cloud computing detecting, and accept
that ICA achieves higher and faster performance in experiments [12]. However,
above sub-space methods only contain the global structure and ignore the lo-
cal structure in original datasets. Local projection remaining model achieves
more accurate describe of data [13, 14]. In order to solve the problem that
linear method induces high computational complexity and limited expression
original information, Fujimaki, etc., rebuild the state space by inducing ker-
nel model [15]. Faschi, etc., achieve the feature extraction model based on
regression metric analysis, which is used to find anomaly in cloud platform
[16]. However, many of these methods are limited due to all of features from
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sub-systems are linked to a long feature vector ignoring the complementary
information from difference sub-systems. Moreover, above methods does not
consider to optimize the discriminative model to enhance the performance.
Finding effective and robust learning models relies on appropriate discrimi-
native model building processing of the anomaly detecting. Deng, etc. utilize
SMO network to predict anomaly in Iaas cloud platform obtaining accurate
results [17]. Sauvanaud, etc. exploit the dynamic index set both to update
anomaly class and to compute the classification of the mean value adapting
the changing of data distribution [18]. Fu, etc. first, describe the normal of
the system based on Bayesian model; second, confirm the anomaly and ob-
tain labeled samples; finally, semi-supervised model based on decision trees
is used to predict anomaly in future [19]. Lan, etc. proposed the automatic
recognition method for large scale distributed systems, which is using unsu-
pervised model to detect abnormal nodes increasing the performance [20]. In
order to reduce complexity of the algorithm, Wang, etc. find K-nearest nodes
based on R-tree index method [21]. Unsupervised models overcome the dif-
ficult that samples tag labels by manual and achieve better performance in
various of application fields [22-34], but these models high dependent on the
distribution of samples. Moreover, it is an important influence how to de-
sign the metric method. Therefore, anomaly detecting methods by supervised
have gained widespread concern. Beak, etc. tag samples and then utilize clas-
sification model to find anomaly [35]. Wang, etc. utilize the entropy model
transforming samples into time series to enhance the accuracy [36]. Tan, etc.
build on anomaly early-warning system by mixing between the Markov Model
and Enhanced Bayesian Networks [37]. Yao, etc. proposed the accompanied
detection model based on C4.5 classification model, which is defining both
log-primary from all of samples and log-accompanied from abnormal sam-
ples. In this method, log-primary are used to train the classification model,
and log-accompanied are used to recognize the type of anomalies [38]. Liu,
etc. exploit SMO network to achieve automatic recognition and detection [39].
However, above methods may not be sufficiently for the definition of detecting-
by-learning. For this reason, first, ignore the complementary information from
multiple sub-systems. Moreover, divide into two single steps including extrac-
tion feature and classification, which is resulting from the failure supervised
information in extraction feature processing. Second, the data distribution is
imbalance from the cloud platform, which is reducing the detecting accuracy.
Third, it is different from the traditional classification problem of anomaly de-
tecting is the first sequence steps of anomaly handing, and the most suitable
handing way is used to approach anomaly ranked. Therefore, the target that
the anomaly detecting problem is defined as data associate based on detecting-
by-learning is obtain anomaly set and anomaly ranking by learning models.
Overview of our algorithm is illustrated in Figure 1. We pose anomaly detect-
ing as a data learning problem, which is solved by multi-view learning model.
Our method achieves both automatic fuses multi-view features from multiple
sub-systems of the cloud platform and obtains optimized discriminative model
by improved extreme learning machine. In order to handle anomaly with dis-
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tinguished methods and consider imbalance problem, we proposed the novel
method to rank the set of anomaly, and then using ranking results to optimize
the classification model to enhance robust under imbalance distribution. The
proposed model based on ELM has the following characteristics:

1. We provide an online method to detect anomaly by multi-view learning
based on ELM without manual intervention.

2. The proposed model achieves that multi-view features automatic fuse from
multiple sub-systems according to supervised information by iterating to
minimize the train error, which is exploit the complementary information
substantially and obtain the optimal solution space under currently fea-
tures.

3. Ranking the set of anomaly by proposing the novel model for post-processing,
and then generate weight to retrain the classification model to enhance the
robustness for imbalance distribution.

4. Through the proposed model by learning, we manage various challenges
from high-speed data stream, high-dimension index set, imbalance distri-
bution anomaly, and so on.

For the rest of this paper, we introduce ELM in section 2. In section 3 and
section 4, we proposed multi-view model to obtain the set of anomaly, ranking
anomaly and optimal the classification model by means of adapting weights
from ranking results. In section 5, we utilize collected data from the private
cloud platform to evaluate the proposed method and comparing it with existing
detecting techniques.

2 Preliminaries: ELM and OSELM

2.1 ELM

In order to facilitate the understanding of our method, this section briefly
reviews the related concepts and theories of ELM and developed OSELM.

Extreme learning machine is improved by single hidden layer neural net-
work (SLFNs): assume given N samples (X,T ), where X = [x1, x2, ..., xN ]T ∈

R
d×N , T = [t1, t2, ..., tN ]T ∈ R

Ñ×N , and ti = [ti1, ti2, ..., tim]T ∈ R
m. The

method is used to solve multi-classification problems, and thereby the number
of network output nodes is m(m ≥ 2). There are Ñ hidden layer nodes in net-

works, and activation function h(·) can be Sigmoid or RBF:
∑Ñ

i=1 βih(aixj +

bj) = oj where j = 1, · · · , Ñ , aj = [aj1, aj2, · · · , ajd]
T is the input weight vec-

tor, and βj = [βj1, βj2, ..., βjm]T is the output weight vector. Moreover, aj ,
bj can be generated randomly, which is known by. Written in matrix form:
Hβ = T , where Hi = [h1(a1x1 + b1), · · · , hN(a

Ñ
x1 + b

Ñ
)]. Moreover, the solu-

tion form of Hβ = T can be written as: β̂ = H†T , where H† is the generalized
inverse matrix of H . ELM minimize both the training errors and the output
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weights. The expression can be formulated based on optimization of ELM:

Minimize : 1

2
‖β‖2

2
+ C

1

2

∑N

i=1
‖ξi‖

2
2

Subject to : tiβ · h(xi) ≥ 1 − ξi , i = 1 , ...,N

ξi ≥ 0, i = 1, ..., N

(1)

where ξi =
(
ξi,1 · · · ξi,m

)
is the vector of the training errors. We can solve the

above equation based on KKT theory by Lagrange multiplier, and can obtain
the analytical expression of the output weight: β̂ = HT ( I

C
+HHT )−1T . The

output function of ELM is: f(x) = h(x)β̂ = h(x)HT ( I
C
+HHT )−1T .

2.2 OSELM

The above model is used to solve classification problem for static batch data.
Aiming to this problem Rong et al. proposed an increment classification model
OSELM [51]. It is an online solving algorithm based on ELM. The model trains
the∆N(∆N ≥ 1) chunk of new samples to obtain new model, then uses matrix
calculation with the original model. Through the above calculation, the new
output weight matrix β̂N+∆N is obtained. When the new ∆N chunk arrives,
the hidden output weight matrix is updated. The expression is listed as follows:

HN+∆N =




h(x1; a1, b1) · · · h(x1; aÑ , bÑ )
...

...
h(xN ; a1, b1) · · · h(xN ; aÑ , bÑ )

h(xN+1; a1, b1) · · · h(xN+1; aÑ , bÑ )
...

...
h(xN+∆N ; a1, b1) · · · h(xN+∆N ; aÑ , bÑ)




=




h1

...
hN

hN+1

...
hN+∆N




=

[
HN

H∆N

]

where hN+k =
[
h(xN+k; a1, b1) · · · h(xN+k; aÑ , bÑ)

]T
(k = 1, . . . , ∆N) is the

kth new sample corresponding the vector. Therefore, the output vector is

T∆N =
[
tN+1 · · · tN+∆N

]T
. Therefore, the incremental expression of the out-

put weight is obtained:

β̂N+∆N = (HT
NHN +HT

∆NH∆N )−1(HT
NTN +HT

∆NT∆N ) (2)

Let G0 = (HT
NHN )−1, and the incremental expression G1 can be written as:

G1
−1 = G0

−1 +HT
∆NH∆N (3)

According to the equation (4) and (5), the new output weight matrix

β̂N+∆N becomes:

β̂N+∆N = G1(HNTN +HT
∆NT∆N ) = βN +G1H

T
∆N (T∆N −H∆NβN ) (4)

where G1 = (G−1
0 +HT

∆NH∆N )−1.
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According to the above equation, we formulate the further expression:

G1 = G0 −G0H
T
∆N (I∆N +H∆NG0H

T
∆N )−1H∆NG0 (5)

From the above learning process, OSELM trains new model by adjusting the
original model according to the equation (7) when the new dynamic samples
are arriving.

3 The proposed anomaly detecting and ranking model

In order to obtain anomaly in real-time from data stream of the cloud comput-
ing platform, we proposed an incremental detecting model based on multi-view
features, ranking abnormal samples that is prerequisite of anomaly handling
generate weights to feedback adjustment the classification model at current
to enhance the robustness for imbalance samples of anomaly. The workflow of
proposed model is show in Fig. 2., and it divides into two parts: local train-
ing and online training. In local training processing, the proposed multi-view
features model is used to automatic fuse difference features and achieve opti-
mized discriminative model. In online training processing, first, fuse multiple
features according to the local learning structure, which reduce time consum-
ing from retraining all of samples including local and online samples. Second,
rank anomalies detected to handle differently. Finally, set self-adapting weights
for anomalies that are used to adjust the classification model to avoid the in-
fluence of imbalance distribution.

3.1 Multi-view features fusion and discriminative optimization

The number of state indicators from difference subsystems in the cloud com-
puting platform belongs to the range from dozens to hundreds, which is com-
posed the high-dimensional feature space. However, the information and noisy
between sub-systems will influence the detected accuracy in subsequent calcu-
lations and reduce the performance of detecting. Most traditional models link
multiple features into the long vector, and then extract principal components
from this vector to avoid information redundancy. It is difficult to mining po-
tential and complementary information from multiple features. Aiming above
problem, we automatic fuse multiple features and optimize classification model
by iterative solving. The proposed method based on ELM that is used to clas-
sify samples. However, when the sample contains various features, the ELM
model is difficult applied to solve multiple features of the same sample. In this
paper, the the proposed fusion method based on ELM is describe as follow:

Given N the different samples, which contain V features of each sam-
ple collected in multiple ways. The feature v corresponds to the samples are:

(x
(v)
i , t

(v)
i ), where X(v) =

[
x
(v)
1 , . . . , x

(v)
N

]T
∈ R

D×N , t
(v)
i =

[
t
(v)
i1 , . . . , t

(v)
im

]T
∈

R
m. Meanwhile, the same sample corresponds to the same class, then there
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is: t
(1)
i = t

(2)
i = t

(V )
i . The output weight β is solved by using the samples that

contain combined multi-view features. The optimization equation is as follows:

Minimize : 1
2 ‖β‖

2
2 +

V∑
v=1

k(v)

(
N∑
j=1

∥∥∥ε(v)j

∥∥∥
2

2

)

Subject to :
(
k ·H(v)

)
· β = tTi −

(
ε
(v)
i

)T

V∑
v=1

k(v) = 1 k > 0

(6)

where kj is the combined parameter that corresponds to the single-features.

ξ
(v)
i =

(
ξ
(v)
i1 , . . . , ξ

(v)
im

)
is training error vector that corresponds to feature v.

β is the output weight vector for different feature space in the equation (2).
According to the equation (2), the target is to obtain the minimum value of
the training error that combine the different feature space. However, according
to the equation, the solution of [k1, k2] may be (0,1)/(1,0). In this situation,
it will degenerates to the single feature model, and other features are failed.
Therefore, we introduction the high power factor r, and define r ≥ 2. The
equation is improved as follows:

Minimize : 1
2 ‖β‖

2
2 +

V∑
v=1

kr(v)

(
N∑
j=1

∥∥∥ε(v)j

∥∥∥
2

2

)

Subject to :
(
k ·H(v)

)
· β = tTi −

(
ε
(v)
i

)T

V∑
v=1

kr(v) = 1 k > 0

(7)

Iterative computing is used to solve both fusion coefficient and output weights
due to generate interaction between feature fusion and optimization of hidden
layer output weights. First, solve initial output weights by uniform fusing
multi-view features. Second, testing samples of single feature with the help
of solved weights. Finally, adjust the fusion coefficient according to errors of
testing, moreover, repeating the firstly step. Therefore, we exploit Lagrange
multiplier method, the equation is transformed into:

Minimize : 1
2 ‖β‖

2
2 +

V∑
v=1

kr(v)

(
N∑
j=1

∥∥∥ε(v)j

∥∥∥
2

2

)

Subject to :
(
k ·H(v)

)
· β = tTi −

(
ε
(v)
i

)T

V∑
v=1

kr(v) = 1 k > 0

(8)
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And then, ferivation both variables β, k and Lagrange multipliers a, b, and
obtain output weights display expression as follow:

Minimize : 1
2 ‖β‖

2
2 +

V∑
v=1

kr(v)

(
N∑
j=1

∥∥∥ε(v)j

∥∥∥
2

2

)

Subject to :
(
k ·H(v)

)
· β = tTi −

(
ε
(v)
i

)T

V∑
v=1

kr(v) = 1 k > 0

(9)

, and the fusion coefficient:

Minimize : 1
2 ‖β‖

2
2 +

V∑
v=1

kr(v)

(
N∑
j=1

∥∥∥ε(v)j

∥∥∥
2

2

)

Subject to :
(
k ·H(v)

)
· β = tTi −

(
ε
(v)
i

)T

V∑
v=1

kr(v) = 1 k > 0

(10)

In this paper, we improve above model to incremental detecting method. Ac-
cording to data generation from the cloud computing platform, the training
process is divided into offline and online:

Offline training: sampling multi-view features from the cloud platform,
training fusion model from accumulating data, and solve both β and k accord-
ing to equation (9) and (10).

Online: the solved offline coefficient is used to fuse new dataset x∆N , and
obtain the updated output matrix. According to the equation (b), combine
with the matrix H∆N to solve the incremental output weight matrix as follow:

βN+∆N = S1(HNTN +HT
∆NT∆N ) = βN + S1H

T
∆N (T∆N −H∆NβN ) (11)

where S−1
1 = S−1

0 + HT
∆NH∆N . Therefore, our model achieves anomaly de-

tecting in the cloud computing platform at real-time.

3.2 Anomaly ranking and model adjusting

Anomaly detecting is the precondition of anomaly handling to ensure high
efficient running of the cloud computing platform. However, anomalies can
be divided into difference degrees according to difference threats. Aiming to
this problem, we proposed the novel method to ranking anomalies and the
result of ranking is used to adjust the classification model to solve the im-
balance problem. The workflow of the proposed model is shown in Fig. 2,
including 4 steps: 1) training the classification model by the original train-
ing dataset, moreover, obtaining the output hidden weight and the output
matrix; 2) according to statistical analysis, we find that it is closely related
between the output matrix and the location of sample (verify it in the next
paragraph). The classification matrix Tn×c can be obtained from the equation
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Fig. 1: Statistical analysis of samples distribution

Hn×mβm×c = Tn×c, where the category number is the dimension of T , and the
maximum value of any row of the matrix fmax(Ti×c) is the class of the sam-
ple. We exploit the matrix T to describe the location of each sample, achieving
the sequence l by ranking fmax(Ti×c). The sequence fpos(fmax(Ti×c)) corre-
spond the location sequence, which is smaller value corresponding the closer
distance between the samples and the classification boundary; 3) weight sam-

ples ranked by fmax(Ti×c)/
∑N

i=1 fmax(Ti×c), due to the small number for
abnormal samples, weighted samples can adjusting the adaptability of classi-
fication to imbalance distribution; 4) weighted samples are used to retrain the
classification model to enhance the robustness.

In order to verify step 2, we obtain the statistics result of all of samples from
the testing dataset. First, rank the vector fmax(Ti×c) ; and then, divide the
vector fmax(Ti×c) into ten ranges according to values, and count the number
for each range. The more intuitive is shown in Fig. 3, the right of figure 3 is
the histogram that is the samples number from then evenly-distributed ranges,
and the left of figure 3 is the scatter-plots that is corresponding the histogram.
From the figure 3, we can know locations from three kinds of samples, in 1th
type, the number of 20% samples in front of the vector lhead is rather less
and samples close to the classification boundary. In 2th type, the number of
20% samples in rear of the vector lrear is rather less and samples far from
the classification boundary. In 3th type, remaining samples that account for
the largest proportions and these samples locate in the medium position of the
classification region. Therefore, above conclusion that is the vector fmax(Ti×c)
representing the location of the sample is verified by analysis.

4 Experiments

4.1 Experiments setting

In order to measure the performance of the proposed anomaly detecting method,
we deploy the experiment environment based on OpenStack, the framework is
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shown in Fig.4. Moreover, the specific is set as the following: (1) The operating
system is Ubuntu16.4.01 in the virtual service of the master and services, and
we install the virtualization hypervisor KVM+Qemu. (2) The manage compo-
nent is OpenStack in the cloud computing platform. (3) Performance indicator
vectors of virtual services are collected from Prometheus. (4) In order to sim-
ulate the working state of each virtual service, Sysbench and Webbench are
used benchmarking frameworks. We choose 5 computers as work nodes, and
deploy 3 virtual services in each node.

4.2 Dataset collecting and descripting

In this paper, we grab the state data of the virtual service from Metric Agent
service to Retrieval in real-time. In order to avoid network congestion and
to ensure transmission efficiency of computing data, we collect samples under
10s frequency, and sustained collection 3 hours. Therefore, we obtain the total
items is 16200 where offline samples 20% of all samples (3240 items). Online
detecting sustains 36 minutes where the number of training samples is 1620
and the number of testing samples is 1620. We collect 4 kinds of state data
from virtual services including CPU, memory, disk I/O, network-service. Each
item is described as follows ¡time-stamp, host, attribute-set (CPU), attribute-
set (memory), attribute-set (disk-I/O), attribute-set (network-service). The
specific description of attributes is shown in table 1.

CPU anomaly: run computation programs in virtual services to achieve the
very high CPU utilization rate. In this paper, the CPU anomaly is repressed
as cpu Calculation. I/O anomaly: creating, writing, reading a large number of
files in virtual services achieve system I/O anomalies. In this paper, the I/O
anomaly is repressed as io Operate. Network anomaly: send a large number
of requiring to achieve network anomalies injection and induce the high occu-
pancy rate of network resources of virtual services. In this paper, the Network
anomaly is repressed as net Operate. Memory anomaly: reading/writing the
fixed-size memory block to increase the memory load. In this paper, memory
anomaly include two classes: memory Read and memory Write.

4.3 Experiment results and analysis

Fig.2. is the histogram of sample size, and compares the positive and negative
of dataset due to datasets contained anomalies are imbalance distribution. In
order to verify the performance of anomaly detecting in cloud computing plat-
form, we utilize ROC curve to visual represent experiment results, therefore,
we obtain both (false positive rate, RateFP) and (true positive rate, RateTP)
of each sample, the defined as follows:

RateTP = ETP/EP ;RateFP = EFP/EN (12)
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Table 1: The attributes description (CPU and Memory) of sub-systems

CPU
attributes set

Description
Memory

attributes set
Description

node
cpu idle

Free percentage
node
memory

Available memory

node
cpu iowait

Wating I/O time
node
memory Buffers

Block device cache

node
cpu softing

Response software interruption time
node
memory Cached

Character device cache

node
cpu system

Proportion of Kernel Operations
node
memory Swapd

Number of Use Spaces

node
cpu user

User Process Propo
node
memory MemTotal

Total physical memory

node
cpu nice

Change process
node
memory Memfree

Idle number

node
cpu irq

Response to hardware interrupt time
node
memory Slab

Kernel uses memory

node
cpu cs

Process switching time
node
memory Sheme

Process shared memory

node
cpu running

Number of Runnable Tasks
node
memory VmallocTotal

Virtual Machine Memory Volume

node
vcpu run

Virtual Machine Runtime
node
memory VmallocRate

Virtual Machine Memory Utilization Rate

node
cpu runrate

Virtual Machine Utilization Rate
node
memory VmallocMax

AMaximum occupancy of virtual machines

Table 2: The attributes (I/O and Network) description of sub-systems

I/O
attributes set

Description
Network

attributes set
Description

node
disk await

I/O
waiting time

node
network

The amount of
data received per second

node
disk svc time

I/O
service time

node
network transmit bytes

The amount of
data sended per second

node
disk read time ms

Number of
readings per second

node
network receive packets

Packages received
per second

node
disk write time ms

Number of
writing per second

node
network transmit packets

The amount of
data sended per second

node
disk sectors written

Reading
sector count

node
network trLoss packets

Number of
Packets Lost on Acceptance

node
disk sectore written

Writing
sector count

node
network trLoss packets

Number of
Packets Lost When Sending

node
disk io time weighted

Percentage of
operating time

node
netstat TcpExt TCPOFOQueue

TCP
sequence

node
disk bytes read

Reading
bit number

node
netstat TcpExt TCPOrigDataSent

TCP
traffic

node
disk bytes written

Writing
bit number

node
netstat TcpExt TCPLos

TCP
untraffic

node
disk Vread time

Number of
virtual block reads per second

node
Vnetwork receive bytes

Virtual Network
Accepts Data Volume

node
disk Vwrite time

Write times
per second for virtual blocks

node
Vnetwork transmit bytes

The amount of
data sent by virtual network
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where the number of positive is EP , and the number of negative is EN . ETP
and ETN that are the number of classification results are used to compose the
coordinate of ROC curve. ROC curve describe the performance by plotting
points and linking these points as a curve. When the location of the point is
closer to 1, we can know that the classification achieves more performance. In
this paper, we choose 3 models to compare and analysis the effectiveness of the
proposed model. (1) OrigiF-KNN model, link all features from all subsystems
from the cloud computing platform directly, and then KNN model is used to
detect anomalies. (2) PCA-KNN model, utilize PCA to reduce the dimension
of the linked feature, and then KNN model is used as the classification model.
(3) KernelPCA-KNN model, utilize kernel PCA to reduce the dimension of the
linked feature, and then KNN model is used as the classification model. Fig.6.
shows experiment results including our model and above 3 models, where blue
curves are detection results from normal samples, and yellow curves are de-
tection results from anomalies. From figure 7, the proposed method enhance
the detecting accuracy due to fully utilizes the complementary information
from difference subsystems. Figure 8 is comparison between difference mod-
els when cpu calculation is injected in the cloud computing platform. We can
learn that Origi-KNN obtains the unsatisfied result due to the linked feature
contains a lot of noisy and redundancy information to distribute the detecting
result. KernelPAC-KNN by non-linear mapping obtains higher performance
comparing with PCA-KNN. Fig. 9. shows difference detecting results under
io Operate anomalies, our model combines with the supervised information to
achieve multi-view features automatic fusion, and optimize the solution space
of the classification model to enhance the performance. When net Operate
anomalies are injected in the cloud computing platform, curves of Origi-KNN
and KernelPCA-KNN are closer to the diagonal position of ROC, then detect-
ing accuracies of both models are random from figure 9. The proposed model
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Fig. 3: Comparison of ROC curves of cpu Calculation anomalies

obtain the satisfied performance. In figure 10, we inject both memory Read
and memory Write in the cloud computing platform. PCA-KNN, KernelPCA-
KNN and our model achieve better results under the kind of anomaly.

5 Conclusion

We presented an effective method for anomaly detecting of the cloud comput-
ing platform by building the incremental machine learning model. Our problem
is formulated as the binary classification problem in real-time, whose solution is
learned through a improve multiple features ELM model. The proposed model
automatic fuses multiple features from difference sub-systems and obtains the
optimized classification solution by minimizing the training error sum; ranked
anomalies are determined by the relation between samples and the classifica-
tion boundary, and weighting samples ranked retrain the classification model.
We can deal with various challenges in anomaly detecting, such as imbalance
distribution, high dimensional features and others, effectively through multi-
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Fig. 4: Comparison of ROC curves of io Operate anomalies

view learning and feed adjusting. Our model is fast and generalize well to
many other sequences from the cloud computing platform.
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