Skip to main content

Advertisement

Log in

Tetragonal Local Octa-Pattern (T-LOP) based image retrieval using genetically optimized support vector machines

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The enormous increase in digital image collections motivates the research community to propose powerful Content Based Image Retrieval (CBIR) algorithms to employ in critical scientific domains. In this paper, we have proposed Tetragonal Local Octa-Patterns for CBIR that are based on the direction of center pixel and generate an 8-bit octa-pattern. Neighbors at three diagonal locations are then used to generate Tetragonal Octa-Patterns. In order to enhance the precision, Genetic algorithm has been applied on obtained features to resolve the class imbalance problem for better classification through SVM. Experimental results prove the reliability of method by comparing against state-of-the-art methods in terms of precision and recall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Arevalillo-Herr’aez M, Ferri FJ, Moreno-Picot S (2011) Distance-based relevance feedback using a hybrid inter active genetic algorithm for image retrieval. Appl Soft Comput 11(2):1782–1791

    Article  Google Scholar 

  2. Bay H, Ess A, Tuytelaars T, Gool LV (2008) Speeded-up robust features. Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  3. Caltech-101 dataset. Online available on: https://www.vision.caltech.edu/Image_Datasets/Caltech101. Accessed 13 Dec 2016

  4. Caltech-256 dataset. Online available on: http://www.vision.caltech.edu/Image_Datasets/Caltech256. Accessed 13 Dec 2016

  5. Campana BJL, Keogh EJ (2010) A compression-based distance measure for texture. Statist Anal Data Mining 3(6):381–398

    Article  MathSciNet  Google Scholar 

  6. Cinque L, Ciocca G, Levialdi S, Pellicano A, Schettini R (2001) Color based image retrieval using spatial chromatic histograms. Image Vis Comput 19(13):979–986

    Article  Google Scholar 

  7. ElAlami ME (2011) A novel image retrieval model based on the most relevant features. Knowl-Based Syst 24:23–32

    Article  Google Scholar 

  8. ElAlami ME (2013) New matching strategy for content based image retrieval system. Appl Soft Comput 14:407–418

    Article  Google Scholar 

  9. Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13(9):891–906

    Article  Google Scholar 

  10. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2012) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybern Part C Appl Rev 42(4):463–484

    Article  Google Scholar 

  11. Guha T, Ward RK (2014) Image similarity using sparse representation and compression distance. IEEE Trans Multimedia 16(4):980–987

    Article  Google Scholar 

  12. Guo JM, Prasetyo H (2015) Content-based image retrieval using features extracted from Halftoning based block truncation coding. IEEE Trans Image Process 24(3):1010–1024

    Article  MathSciNet  MATH  Google Scholar 

  13. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision Conf., pp 147–151

  14. Hearst MA et al (1998) Support vector machines. IEEE Intelligent Systems and their Applications 13(4):18–28

    Article  Google Scholar 

  15. Herrera F, Lozano M, Sanchez A (2005) Hybrid crossover operators for real-coded genetic algorithms : an experimental study. Soft Comput 9:280–298

    Article  MATH  Google Scholar 

  16. Huang PW, Dai SK (2003) Image retrieval by texture similarity. Pattern Recogn 36(3):665–679

    Article  Google Scholar 

  17. Irtaza A, Jaffar MA (2014) Categorical image retrieval through genetically optimized support vector machines (GOSVM) and hybrid texture features. SIViP 9(7):1503–1519

    Article  Google Scholar 

  18. Irtaza A, Jaffar MA et al (2014) Embedding neural networks for semantic association in content based image retrieval. Multimed Tools Appl 72(2):1911–1931

    Article  Google Scholar 

  19. Jain AK, Vailaya A (1996) Image retrieval using color and shape. Pattern Recogn 29(8):1,233–1,244

    Article  Google Scholar 

  20. Jhanwar N, Chaudhuri S, Seetharaman G, Zavidovique B (2004) Content based image retrieval using motif co-occurrence matrix. Image Vis Comput 22:1211–1220

    Article  Google Scholar 

  21. Jin C, Ke S-W (2017) Content-based image retrieval based on shape similarity calculation. 3D Res 8:23

    Article  Google Scholar 

  22. Lai C-C, Chen Y-C (2011) A user-oriented image retrieval system based on interactive genetic algorithm. IEEE Trans Instrum Meas 60:3318–3325

    Article  Google Scholar 

  23. Lin C-H, Chen R-T, Chan Y-K (2009) A smart content-based image retrieval system based on color and texture feature. Image Vis Comput 27:658–665

    Article  Google Scholar 

  24. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  25. Manjunath BS, Ma W-Y (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842

    Article  Google Scholar 

  26. Mao J, Jain AK (1992) Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recogn 25(2):173–188

    Article  Google Scholar 

  27. Mehmood Z, Abbas F, Mahmood T, Javid MA, Rehman A, Nawaz T (2018) Content-based image retrieval based on visual words fusion versus features fusion of local and global features. Arab J Sci Eng:1–20

  28. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  MATH  Google Scholar 

  29. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  30. Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175

    Article  MATH  Google Scholar 

  31. Oxford Flowers Dataset. Online available on: http://www.robots.ox.ac.uk/∼vgg/data/flowers/17/. Accessed 13 Dec 2016

  32. Pass G, Zabih R, Miller J (1997) Comparing images using color coherence vectors. In: Proceedings of the fourth ACM international conference on multimedia. https://doi.org/10.1145/244130.244148

  33. Raveaux R, Burie JC, Ogier JM (2013) Structured representations in a content based image retrieval context. J Vis Commun Image Represent 24:1252–1268

    Article  Google Scholar 

  34. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  35. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang JZ, Li J, Wiederhold G (2001) SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans Pattern Anal Mach Intell 23(9):947–963

    Article  Google Scholar 

  37. Yang X, Cai L (2014) Adaptive region matching for region-based image retrieval by constructing region importance index. IET Comput Vis 8(2):141–151

    Article  Google Scholar 

  38. Youssef SM (2012) ICTEDCT-CBIR integrating curvelet transform with enhanced dominant colors extraction and texture analysis for efficient content based image retrieval. Comput Electr Eng 38(5):1358–1376

    Article  Google Scholar 

  39. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with higher-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zain Shabbir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabbir, Z., Irtaza, A., Javed, A. et al. Tetragonal Local Octa-Pattern (T-LOP) based image retrieval using genetically optimized support vector machines. Multimed Tools Appl 78, 23617–23638 (2019). https://doi.org/10.1007/s11042-019-7597-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7597-1

Keywords

Navigation