Skip to main content
Log in

Discriminative low-rank representation with Schatten-p norm for image recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Low-rank representation (LRR) has attracted much attention recently due to its efficacy in a rich variety of real world applications. Recently, the non-convex regularization has become widely used in the rank minimization problem. In this paper, we propose a discriminative low-rank representation with Schatten-p norm (DLRR-SPN) to learn a robust and discriminative affinity matrix for image recognition. To this end, we first impose the Schatten-p norm regularization on the representation matrix to learn the global structure of data. Moreover, the adaptive distance penalty is used to preserve the local neighbor relationship of data. The objective function is formulated as a Schatten-p norm minimization problem, which can be solved via alternating direction method of multipliers (ADMM). To enhance the separation ability of the discriminative affinity matrix for semi-supervised recognition problem, the angular information of the principal directions of the low-rank representation is further exploited. Finally, an effective semi-supervised classifier is utilized on the learned affinity matrix for final prediction. Extensive experimental results on image recognition demonstrate the effectiveness of the proposed method and its superiority in performance over the related state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php

  2. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

  3. http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html

  4. http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html

  5. http://cs.nyu.edu/~roweis/data.html

References

  1. Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. Siam J Imaging Sci 2(1):183–202

    Article  MathSciNet  MATH  Google Scholar 

  2. Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Neural information processing systems, pp 585–591

  3. Cai D, He X, Han J, Zhang H (2006) Orthogonal laplacianfaces for face recognition. IEEE Trans Image Process 15(11):3608–3614

    Article  Google Scholar 

  4. Candes EJ, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9(6):717–772

    Article  MathSciNet  MATH  Google Scholar 

  5. Candes EJ, Tao T (2010) The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inf Theory 56(5):2053–2080

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen J, Yang J (2014) Robust subspace segmentation via low-rank representation. IEEE Trans Syst Man Cybern 44(8):1432–1445

    Google Scholar 

  7. Chen J, Yi Z (2014) Sparse representation for face recognition by discriminative low-rank matrix recovery. J Vis Commun Image Represent 25(5):763–773

    Article  Google Scholar 

  8. Cheng W, Zhao M, Xiong N, Chui KT (2017) Non-convex sparse and low-rank based robust subspace segmentation for data mining. Sensors 17(7):1633

    Article  Google Scholar 

  9. Du H, Zhao Z, Wang S, Hu Q (2017) Two-dimensional discriminant analysis based on Schatten p-norm for image feature extraction. J Vis Commun Image Represent 45:87–94

    Article  Google Scholar 

  10. Elhamifar E, Vidal R (2013) Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans Pattern Anal Mach Intell 35(11):2765–2781

    Article  Google Scholar 

  11. Fei L, Xu Y, Fang X, Yang J (2017) Low rank representation with adaptive distance penalty for semi-supervised subspace classification. Pattern Recogn 67:252–262

    Article  Google Scholar 

  12. Feng L, Sun H, Sun Q, Xia G (2016) Image compressive sensing via truncated Schatten-p norm regularization. Signal Process: Image Commun 47:28–41

    Google Scholar 

  13. Glowinski R, Tallec PL (1989) Augmented Lagrangian and operator-splitting methods in nonlinear mechanics. Math Comput 58(197)

  14. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Neural information processing systems, pp 1097–1105

  15. Kun L, Liu W, Gan C, Tan M, Ma H (2018) T-c3d: Temporal convolutional 3D network for real-time action recognition. In: National conference on artificial intelligence, pp 7138–7145

  16. Lai M, Xu Y, Yin W (2013) Improved iteratively reweighted least squares for unconstrained smoothed q minimization. SIAM J Numer Anal 51(2):927–957

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin Z, Chen M, Ma Y (2011) The augmented Lagrange multiplier method for exact recovery of corrupted low-rank Matrices. In: Neural information processing systems, pp 1–20

  18. Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. In: Neural information processing systems, pp 612–620

  19. Liu G, Yan S (2011) Latent low-rank representation for subspace segmentation and feature extraction. In: International conference on computer vision, pp 1615–1622

  20. Liu G, Lin Z, Yan S, Sun J, Yu Y, Ma Y (2013) Robust recovery of subspace structures by low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(1):171–184

    Article  Google Scholar 

  21. Liu L, Huang W, Chen D (2014) Exact minimum rank approximation via Schatten p-norm minimization. J Comput Appl Math 267(1):218–227

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu W, Mei T, Zhang Y, Che C, Luo J (2015) Multi-task deep visual-semantic embedding for video thumbnail selection. In: Computer vision and pattern recognition, pp 3707–3715

  23. Liu W, Zha Z, Wang Y, Lu K, Tao D (2016) p-Laplacian regularized sparse coding for human activity recognition. IEEE Trans Ind Electron 63(8):5120–5129

  24. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: recognizing complex activities from sensor data. In: International conference on artificial intelligence, pp 1617–1623

  25. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181(12):108–115

    Article  Google Scholar 

  26. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. In: National conference on artificial intelligence, pp 201–207

  27. Liu W, Ma X, Zhou Y, Tao D, Cheng J (2018) p-Laplacian regularization for scene recognition. IEEE Trans Syst Man Cybern 99:1–14

  28. Liu W, Yang X, Tao D, Cheng J, Tang Y (2018) Multiview dimension reduction via Hessian multiset canonical correlations. Information Fusion 41:119–128

  29. Lu C, Tang J, Yan S, Lin Z (2014) Generalized nonconvex nonsmooth low-rank minimization. In: Computer vision and pattern recognition, pp 4130–4137

  30. Nie F, Huang H, Ding C (2012) Low-rank matrix recovery via efficient Schatten p-norm minimization. In: Twenty-sixth AAAI conference on artificial intelligence, pp 655–661

  31. Nie F, Wang H, Huang H, Ding C (2015) Joint Schatten p-norm and p-norm robust matrix completion for missing value recovery. Knowl Inf Syst 42(3):525–544

    Article  Google Scholar 

  32. Peng Y, Lu BL, Wang S (2015) Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning. Neural Netw 65:1–17

    Article  MATH  Google Scholar 

  33. Recht B, Fazel M, Parrilo PA (2010) Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. Siam Rev 52(3):471–501

    Article  MathSciNet  MATH  Google Scholar 

  34. Shang F, Liu Y, Cheng J (2016) Scalable algorithms for tractable Schatten quasi-norm minimization. In: Thirty AAAI conference on artificial intelligence, pp 2016–2022

  35. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations

  36. Xie Y, Gu S, Liu Y, Zuo W, Zhang W, Zhang L (2016) Weighted Schatten p-norm minimization for image denoising and background subtraction. IEEE Trans Image Process 25(10):4842–4857

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu C, Lin Z, Zha H (2017) A unified convex surrogate for the Schatten-p norm. In: Thirty-one AAAI conference on artificial intelligence, pp 926–932

  38. Yang J, Yuan X (2012) Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math Comput 82(281):301–329

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang J, Yuan X (2013) Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math Comput 82(281):301–329

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang H, Lin Z, Zhang C, Gao J (2014) Robust latent low rank representation for subspace clustering. Neurocomputing 145(18):369–373

    Article  Google Scholar 

  41. Zhang X, Xu C, Sun X, Baciu G (2016) Schatten-q regularizer constrained low rank subspace clustering model. Neurocomputing 182:36–47

    Article  Google Scholar 

  42. Zhang Z, Xu Y, Shao L, Yang J (2018) Discriminative block-diagonal representation learning for image recognition. IEEE Trans Neural Netw 29(7):3111–3125

    Article  MathSciNet  Google Scholar 

  43. Zhou D, Bousquet O, Lal TN, Weston J, Scholkopf B (2004) Learning with local and global consistency. In: Neural information processing systems, pp 321–328

  44. Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using Gaussian Fields and Harmonic Functions. In: International conference on machine learning, pp 912–919

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) under Grant no. 2013CB329404, the National Natural Science Foundation of China under Grant no. 61572393, the Basic Science Research of Shaanxi province under Grant 2018JQ1038, and the Special Fund for Basic Scientific Research of Central Colleagues, Chang’an University no. 310812171006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changpeng Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, J. & Shi, G. Discriminative low-rank representation with Schatten-p norm for image recognition. Multimed Tools Appl 78, 23075–23095 (2019). https://doi.org/10.1007/s11042-019-7653-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7653-x

Keywords

Navigation