Skip to main content
Log in

A novel biclustering of gene expression data based on hybrid BAFS-BSA algorithm

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As one of usual concepts, co-expressed genes can represent co-regulated genes in gene expression data. This strategy can be refined further because co-expression of the genome may be the result of independent activation under same experimental samples, rather than the same regulatory regime. Therefore, traditional clustering techniques are proposed to find significant clusters, especially, the biclustering technology. By combining Binary Artificial Fish Swarm (BAFS) with Binary Simulated Annealing (BSA) algorithms, the hybrid algorithm named BAFS-BSA-BIC was proposed in this paper. When this method of biclustering was applied to several datasets, lots of biological significant bifclusters were searched, and the results demonstrate the promising clustering performance of our method. The proposed technology was also compared to classical biclustering technologies-CC, QUBIC, FLOC and original BAFS algorithm, and its robustness and quality are better than these algorithms in searching optimal biclusters of co-expressed genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aarts E, Korst J (1989) Simulated annealing and boltzmann machines. Handbook of brain theory & neural networks

  2. Banka H, Mitra S (2006) Evolutionary biclustering of gene expressions. Ubiquity 10:5

    MATH  Google Scholar 

  3. Ben-Dor A, Chor B, Karp R, Yakhini Z (2003) Discovering local structure in gene expression data: the order-preserving submatrix problem. J Comput Biol 10(3):373–384

    Article  Google Scholar 

  4. Bergmann S, Ihmels J, Barkai N (2003) Iterative signature algorithm for the analysis of large-scale gene expression data. Phys Rev E 67(3):031902

    Article  Google Scholar 

  5. Bouleimen K, Lecocq H (2003) A new efficient simulated annealing algorithm for the resourceconstrained project scheduling problem and its multiple mode version. Eur J Oper Res 149(2):268–281

    Article  Google Scholar 

  6. Bryan K, Cunningham P, Bolshakova N (2005) Biclustering of expression data using simulated annealing, in: Computer-Based Medical Systems, 2005. Proceedings. 18th IEEE Symposium on, IEEE, 383–388

  7. Busygin S, Prokopyev O, Pardalos PM (2008) Biclustering in data mining. Comput Oper Res 35(9):2964–2987

    Article  MathSciNet  Google Scholar 

  8. Cheng Y, Church GM (2000) Biclustering of expression data. International Conference on Intelligent Systems for Molecular Biology 8: 93–103.

  9. Cheng Y, Jiang M, Yuan D (2009) Novel clustering algorithms based on improved artificial fish swarm algorithm. In: Fuzzy Systems and Knowledge Discovery 3: 141–145

  10. Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, Kasim A, Khamiakova T, Van Sanden S, Lin D, Talloen W (2010) Fabia: factor analysis for bicluster acquisition. Bioinformatics 26(12):1520–1527

    Article  Google Scholar 

  11. Jaskowiak PA, Campello RJ, Costa Filho IG (2013) Proximity measures for clustering gene expression microarray data: a validation methodology and a comparative analysis. IEEE ACM T Comput Bi 10(4):845–857

    Google Scholar 

  12. Katayama K, Narihisa H (2001) Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem. Eur J Oper Res 134(1):103–119

    Article  MathSciNet  Google Scholar 

  13. Lan R, Zhou Y, Liu Z, Luo X (2018) Prior knowledge based probabilistic collaborative representation for visual recognition. IEEE T CYBERNETICS: 1–11

  14. Lan R, Li Z, Liu Z, Gu T, Luo X (2019) Hyperspectral image classification using k-sparse denoising autoencoder and spectral-restricted spatial characteristics. Appl Soft Comput 74:693–708

    Article  Google Scholar 

  15. Li G, Ma Q, Tang H, Paterson AH, Xu Y (2009) Qubic: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res 37(15):e101–e101

    Article  Google Scholar 

  16. Lu H, Li Y, Mu S, Wang D, Kim H, Serikawa S (2018) Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet Things 5(4):2315–2322

    Article  Google Scholar 

  17. Lu H, Li Y, Chen M, Kim H, Serikawa S (2018) Brain intelligence: go beyond artificial intelligence. Mobile Netw Appl 23:368–375

    Article  Google Scholar 

  18. Lu H, Li Y, Uemura T, Kim H, Serikawa S (2018) Low illumination underwater light field images reconstruction using deep convolutional neural networks. Futur Gener Comput Syst 82:142–148

    Article  Google Scholar 

  19. Ma PC, Chan KC (2009) A novel approach for discovering overlapping clusters in gene expression data. IEEE T Bio Med Eng 56(7):1803–1809

    Article  Google Scholar 

  20. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE ACM T Comput BI 1(1):24–45

    Google Scholar 

  21. Markowetz F, Spang R (2007) Inferring cellular networks–a review. BMC Bioinformatics 8(6):S5

    Article  Google Scholar 

  22. Nepomuceno JA, Troncoso A, Aguilar-Ruiz JS (2011) Biclustering of gene expression data by correlation-based scatter search. Biodata Min 4(1):3

    Article  Google Scholar 

  23. Nepomuceno JA, Troncoso A, Nepomuceno-Chamorro IA, Aguilar-Ruiz JS (2015) Integrating biological knowledge based on functional annotations for biclustering of gene expression data. Comput Meth Prog Bio 119(3):163–180

    Article  Google Scholar 

  24. Panteli A, Boutsinas B, Giannikos I (2019) On solving the multiple p-median problem based on biclustering. Oper Res: 1–25

  25. Pontes B, Girldez R, Aguilar-Ruiz JS (2015) Quality measures for gene expression biclusters. PlOS ONE 10(3):e0115497

    Article  Google Scholar 

  26. Rathipriya R, Thangavel K, Bagyamani J. Binary particle swarm optimization based biclustering of web usage data. arXiv preprint arXiv:1108.0748

  27. Saber HB, Elloumi M (2015) Dna microarray data analysis: a new survey on biclustering. Int J Comput Bi 4(1):21–37

    Article  Google Scholar 

  28. Serikawa S, Lu H (2014) Underwater image dehazing using joint trilateral filter. Comput Eletr Eng 40(1):41–50

    Article  Google Scholar 

  29. Tanay A, Sharan R, Shamir R Handbook of bioinformatics, chapter biclustering algorithms: a survey, To appear

  30. Xie J, Ma A, Fennell A, Ma Q, Zhao J (2018) It is time to apply biclustering: a comprehensive review of biclustering applications in biological and biomedical data. Brief Bioinform: 1–16

  31. Yang J, Wang H, Wang W, Yu PS (2005) An improved biclustering method for analyzing gene expression profiles. Int J Artif Intell T 14(5):771–789

    Article  Google Scholar 

  32. Yoon S, Nguyen HCT, Jo W (2019) Biclustering analysis of transcriptome big data identifies conditionspecific microRNA targets. Nucleic Acids Res: 1–10

  33. Zhang Y, Gravina R, Lu H, Villari M, Fortino G (2018) PEA: Parallel electrocardiogram-based authentication for smart healthcare systems. J Netw Comput Appl 117:10–16

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (61402240,61502245,61772568), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0921).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Cui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Zhang, R., Gao, H. et al. A novel biclustering of gene expression data based on hybrid BAFS-BSA algorithm. Multimed Tools Appl 79, 14811–14824 (2020). https://doi.org/10.1007/s11042-019-7656-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-019-7656-7

Keywords

Navigation